The nonlinear stability of (n+1)-dimensional FLRW spacetimes

被引:3
作者
Mondal, Puskar [1 ]
机构
[1] Harvard Univ, Harvard Univ Ctr Math Sci & Applicat, Dept Math, Cambridge, MA 02138 USA
关键词
FLRW spacetime; nonlinear stability; relativistic fluids; Einstein flow; EINSTEIN-SCALAR FIELD; EQUATION-OF-STATE; FUTURE STABILITY; HAMILTONIAN-FORMALISM; GLOBAL STABILITY; MINKOWSKI SPACE; PERFECT FLUIDS; CURVATURE; CONSTANT; UNIVERSE;
D O I
10.1142/S0219891624500115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove nonlinear Lyapunov stability of a family of "(n + 1)"-dimensional cosmological models of general relativity locally isometric to the Friedman-Lema & icirc;tre-Robertson-Walker (FLRW) spacetimes including a positive cosmological constant. In particular, we show that the perturbed solutions to the Einstein-Euler field equations around a class of spatially compact FLRW metrics (for which the spatial slices are compact negative Einstein spaces in general and hyperbolic for the physically relevant n = 3 case) arising from regular Cauchy data remain uniformly bounded and decay to a family of metrics with constant negative spatial scalar curvature. To accomplish this result, we employ an energy method for the coupled Einstein-Euler field equations in constant mean extrinsic curvature spatial harmonic (CMCSH) gauge. In order to handle Euler's equations, we construct energy from a current that is similar to the one derived by Christodoulou [The Formation of Shocks in 3-dimensional Fluids, EMS Monographs in Mathematics, Vol. 2 (European Mathematical Society, 2007)] (and which coincides with Christodoulou's current on the Minkowski space) and show that this energy controls the desired norm of the fluid degrees of freedom. The use of a fluid energy current together with the CMCSH gauge condition casts the Einstein-Euler field equations into a coupled elliptic-hyperbolic system. Utilizing the estimates derived from the elliptic equations, we first show that the gravity-fluid energy functional remains uniformly bounded in the expanding direction. Using this uniform boundedness property, we later obtain sharp decay estimates if a positive cosmological constant Lambda is included, which confirms that the accelerated expansion of the physical universe that is induced by the positive cosmological constant is sufficient to control the nonlinearities in the case of small data. A few physical consequences of this stability result are discussed.
引用
收藏
页码:329 / 422
页数:94
相关论文
共 82 条
[1]   Planck 2018 results: VI. Cosmological parameters [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battye, R. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Challinor, A. ;
Chiang, H. C. ;
Chluba, J. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[2]  
Anderson M.T., 2004, Notices of the American Mathematical Society, V51, P184
[3]  
Andersson L, 2004, EINSTEIN EQUATIONS AND THE LARGE SCALE BEHAVIOR OF GRAVITATIONAL FIELDS - 50 YEARS OF THE CAUCHY PROBLEM IN GENERAL RELATIVITY, P299, DOI 10.1007/978-3-0348-7953-8_8
[4]   Existence of constant mean curvature hypersurfaces in asymptotically flat spacetimes [J].
Andersson, L ;
Iriondo, MS .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1999, 17 (06) :503-538
[5]   Elliptic-hyperbolic systems and the Einstein equations [J].
Andersson, L ;
Moncrief, V .
ANNALES HENRI POINCARE, 2003, 4 (01) :1-34
[6]   EINSTEIN SPACES AS ATTRACTORS FOR THE EINSTEIN FLOW [J].
Andersson, Lars ;
Moncrief, Vincent .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2011, 89 (01) :1-47
[7]   Dark energy cosmology with generalized linear equation of state [J].
Babicbev, E ;
Dokuchaev, V ;
Eroshenko, Y .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (01) :143-154
[8]   THE HAMILTONIAN-STRUCTURE OF GENERAL RELATIVISTIC PERFECT FLUIDS [J].
BAO, D ;
MARSDEN, J ;
WALTON, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (03) :319-345
[9]   GAUGE-INVARIANT COSMOLOGICAL PERTURBATIONS [J].
BARDEEN, JM .
PHYSICAL REVIEW D, 1980, 22 (08) :1882-1905