A CNN-Based Semi-supervised Self-training Method for Robust Underwater Fish Recognition

被引:0
作者
Li, Tanqing [1 ]
Zhao, Zhili [1 ]
Zhang, Hengyu [2 ]
Li, Kun [3 ]
Lv, Wenjun [3 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou, Peoples R China
[2] UCL, Gower St, London WC1E 6BT, England
[3] Univ Sci & Technol China, Inst Adv Technol, Dept Automat, Hefei, Peoples R China
来源
PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023 | 2023年
关键词
AI; Semi-Supervised Learning; Self-training; YOLOv5; Underwater Fish Recognition;
D O I
10.1145/3650400.3650660
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent AI advances have revolutionized automation in diverse fields. However, despite object detection research progress, underwater fish species identification remains underexplored. Underwater fish recognition is challenged by the unique underwater environment, fish diversity, and limited labeled data. This study introduces a semisupervised self-training method, using YOLOv5 as the foundation. Our approach iteratively refines the model with labeled and unlabeled data, enhancing accuracy in data-scarce scenarios. Random data augmentation is also adopted to bolsters model robustness, addressing the complexities of underwater environments.
引用
收藏
页码:1553 / 1559
页数:7
相关论文
共 8 条
[1]  
Aruna S.K., 2023 7 INT C INT COM, DOI [10.1109/ICICCS56967.2023.10142531, DOI 10.1109/ICICCS56967.2023.10142531]
[2]   Improved YOLOv5: Efficient Object Detection Using Drone Images under Various Conditions [J].
Jung, Hyun-Ki ;
Choi, Gi-Sang .
APPLIED SCIENCES-BASEL, 2022, 12 (14)
[3]   YOLO-FIRI: Improved YOLOv5 for Infrared Image Object Detection [J].
Li, Shasha ;
Li, Yongjun ;
Li, Yao ;
Li, Mengjun ;
Xu, Xiaorong .
IEEE ACCESS, 2021, 9 :141861-141875
[4]   A multitask model for realtime fish detection and segmentation based on YOLOv5 [J].
Liu, QinLi ;
Gong, Xinyao ;
Li, Jiao ;
Wang, Hongjie ;
Liu, Ran ;
Liu, Dan ;
Zhou, Ruoran ;
Xie, Tianyu ;
Fu, Ruijie ;
Duan, Xuliang .
PEERJ COMPUTER SCIENCE, 2023, 9
[5]  
Shah Chiranjibi, 2023, Proceedings of SPIE, DOI 10.1117/12.2663408
[6]   Object Detection Method for Grasping Robot Based on Improved YOLOv5 [J].
Song, Qisong ;
Li, Shaobo ;
Bai, Qiang ;
Yang, Jing ;
Zhang, Xingxing ;
Li, Zhiang ;
Duan, Zhongjing .
MICROMACHINES, 2021, 12 (11)
[7]  
WEN H M, 2023, Microelectronics & Comput, V40, P22, DOI [10.19304/J.ISSN1000-7180.2022.0334, DOI 10.19304/J.ISSN1000-7180.2022.0334]
[8]   The use of computer vision technologies in aquaculture - A review [J].
Zion, Boaz .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2012, 88 :125-132