Quantum recurrences in the kicked top

被引:3
作者
Anand, Amit [1 ,2 ]
Davis, Jack [1 ,2 ,3 ]
Ghose, Shohini [1 ,4 ,5 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] PSL Univ, Ecole Normale Super, DIENS, CNRS,INRIA, 45 Rue Ulm, F-75005 Paris, France
[4] Wilfrid Laurier Univ, Dept Phys & Comp Sci, Waterloo, ON N2L 3C5, Canada
[5] Perimeter Inst Theoret Phys, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
CHAOS; ROTATOR;
D O I
10.1103/PhysRevResearch.6.023120
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The emergence of classical chaos from an underlying quantum mechanics remains a challenging question due to the differences between dynamics driven by Schrodinger's equation versus Newton's equations. We present an infinite family of purely quantum recurrences that are not present in the classical limit of a chaotic system. They take the form of stroboscopic unitary evolutions in the quantum kicked top that act as the identity after a finite number of kicks. These state-independent recurrences are present in all finite dimensions and depend on the strength of the chaoticity parameter of the top. We further discuss the relationship of these periodicities to the quantum kicked rotor dynamics and the phenomenon of quantum antiresonance.
引用
收藏
页数:9
相关论文
共 29 条
[1]  
AGARWAL GS, 1981, PHYS REV A, V24, P2889, DOI 10.1103/PhysRevA.24.2889
[2]  
Anand A, 2021, Arxiv, DOI arXiv:2107.09809
[3]   ATOMIC COHERENT STATES IN QUANTUM OPTICS [J].
ARECCHI, FT ;
THOMAS, H ;
GILMORE, R ;
COURTENS, E .
PHYSICAL REVIEW A, 1972, 6 (06) :2211-&
[4]   Multiqubit symmetric states with maximally mixed one-qubit reductions [J].
Baguette, D. ;
Bastin, T. ;
Martin, J. .
PHYSICAL REVIEW A, 2014, 90 (03)
[5]   Periodicity of quantum correlations in the quantum kicked top [J].
Bhosale, Udaysinh T. ;
Santhanam, M. S. .
PHYSICAL REVIEW E, 2018, 98 (05)
[6]   NON-RECURRENT BEHAVIOR IN QUANTUM DYNAMICS [J].
CASATI, G ;
GUARNERI, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 95 (01) :121-127
[7]  
Casati G., 1979, Stochastic Behaviour in Classical and Quantum Hamiltonian Systems. Volta Memorial Conference, P334
[8]  
Chaudhury S, 2009, NATURE, V461, P768, DOI [10.1038/nature08396, 10.1038/πature08396]
[9]   Quantum signatures of chaos, thermalization, and tunneling in the exactly solvable few-body kicked top [J].
Dogra, Shruti ;
Madhok, Vaibhav ;
Lakshminarayan, Arul .
PHYSICAL REVIEW E, 2019, 99 (06)
[10]   CHAOS, QUANTUM RECURRENCES, AND ANDERSON LOCALIZATION [J].
FISHMAN, S ;
GREMPEL, DR ;
PRANGE, RE .
PHYSICAL REVIEW LETTERS, 1982, 49 (08) :509-512