Machine Learning Assisted Discovery of Efficient MOFs for One-Step C2H4 Purification from Ternary C2H2/C2H4/C2H6 Mixtures

被引:0
作者
Yan, Tongan [1 ,2 ]
Zhang, Zhengqing [1 ,2 ]
Zhong, Chongli [1 ,2 ]
机构
[1] Tiangong Univ, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Sch Chem Engn & Technol, Tianjin 300387, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; ETHYLENE PURIFICATION; FORCE-FIELD; SEPARATION; METHODOLOGIES; PERFORMANCE; STORAGE; ETHANE;
D O I
10.1021/acs.jced.4c00244
中图分类号
O414.1 [热力学];
学科分类号
摘要
Purifying C2H4 from a mixture of C2H2/C2H4/C2H6 using a single adsorbent is crucial industrially. Yet, the challenge lies in their similar physicochemical properties, leading to low separation efficiency. Additionally, the lack of understanding regarding the structure-performance relationships hinders the development of high-performance metal-organic frameworks (MOFs). In this study, machine learning assisted high-throughput molecular simulation methods are employed to discover efficient MOFs for one-step C2H4 purification. The general material design strategies were proposed based on the analysis of 14,142 CoRE MOF simulation data. These include locking open metal sites, ensuring relative mass proportion of H atoms in the range of 2-4%, optimizing the largest cavity diameter to span 5-7 & Aring; (ultramicropore), and fine-tuning phi within 0.5-0.6. Further using the computational insights obtained, 10 materials were identified with both C2H2/C2H4 and C2H6/C2H4 selectivities exceeding 3 from 137,953 hypothetical MOFs and 303,991 generated MOFs through additional molecular simulations. Our study not only provides screened and designed potential candidates for efficient one-step C2H4 purification from ternary C2H2/C2H4/C2H6 mixtures but also provides useful information for further performance improvement.
引用
收藏
页码:4483 / 4492
页数:10
相关论文
共 60 条
[1]   High-Throughput Computational Screening of the Metal Organic Framework Database for CH4/H2 Separations [J].
Altintas, Cigdem ;
Erucar, Ilknur ;
Keskin, Seda .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (04) :3668-3679
[2]   New Trends in Olefin Production [J].
Amghizar, Ismael ;
Vandewalle, Laurien A. ;
Van Geem, Kevin M. ;
Marin, Guy B. .
ENGINEERING, 2017, 3 (02) :171-178
[3]   Empirical characterization of random forest variable importance measures [J].
Archer, Kelfie J. ;
Kirnes, Ryan V. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (04) :2249-2260
[4]   One-step ethylene production from a four-component gas mixture by a single physisorbent [J].
Cao, Jian-Wei ;
Mukherjee, Soumya ;
Pham, Tony ;
Wang, Yu ;
Wang, Teng ;
Zhang, Tao ;
Jiang, Xue ;
Tang, Hui-Juan ;
Forrest, Katherine A. ;
Space, Brian ;
Zaworotko, Michael J. ;
Chen, Kai-Jie .
NATURE COMMUNICATIONS, 2021, 12 (01)
[5]   Synergistic sorbent separation for one-step ethylene purification from a four-component mixture [J].
Chen, Kai-Jie ;
Madden, David G. ;
Mukherjee, Soumya ;
Pham, Tony ;
Forrest, Katherine A. ;
Kumar, Amrit ;
Space, Brian ;
Kong, Jie ;
Zhang, Qiu-Yu ;
Zaworotko, Michael J. .
SCIENCE, 2019, 366 (6462) :241-+
[6]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[7]   Applications of machine learning in metal-organic frameworks [J].
Chong, Sanggyu ;
Lee, Sangwon ;
Kim, Baekjun ;
Kim, Jihan .
COORDINATION CHEMISTRY REVIEWS, 2020, 423
[8]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22
[9]   Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal-Organic Framework Database: CoRE MOF 2019 [J].
Chung, Yongchul G. ;
Haldoupis, Emmanuel ;
Bucior, Benjamin J. ;
Haranczyk, Maciej ;
Lee, Seulchan ;
Zhang, Hongda ;
Vogiatzis, Konstantinos D. ;
Milisavljevic, Marija ;
Ling, Sanliang ;
Camp, Jeffrey S. ;
Slater, Ben ;
Siepmann, J. Ilja ;
Sholl, David S. ;
Snurr, Randall Q. .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2019, 64 (12) :5985-5998
[10]   Recent advances in computational modeling of MOFs: From molecular simulations to machine learning [J].
Demir, Hakan ;
Daglar, Hilal ;
Gulbalkan, Hasan Can ;
Aksu, Gokhan Onder ;
Keskin, Seda .
COORDINATION CHEMISTRY REVIEWS, 2023, 484