New Insights on the Information Content of the Normalized Difference Vegetation Index Sentinel-2 Time Series for Assessing Vegetation Dynamics

被引:0
作者
Saenz, Cesar [1 ,2 ,3 ]
Cicuendez, Victor [1 ,4 ]
Garcia, Gabriel [5 ]
Madruga, Diego [1 ]
Recuero, Laura [3 ,6 ]
Bermejo-Saiz, Alfonso [1 ]
Litago, Javier [6 ]
de la Calle, Ignacio [2 ]
Palacios-Orueta, Alicia [1 ,3 ]
机构
[1] Univ Politecn Madrid, Dept Ingn Agroforestal, ETSIAAB, Ave Puerta Hierro,2-4,Ciudad Univ, Madrid 28040, Spain
[2] Quasar Sci Resources SL, Camino Ceudas 2, Las Rozas De Madrid 28232, Madrid, Spain
[3] Univ Politecn Madrid, Ctr Estudios Invest Gest Riesgos Agr & Medioambien, C-Senda Rey 13, Madrid 28040, Spain
[4] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Tierra & Astrofis, Madrid 28040, Spain
[5] Univ Complutense Madrid, Dept Comp Architecture & Automat, Madrid 28040, Spain
[6] Univ Politecn Madrid UPM, Dept Econ Agr Estadist & Gest Empresas, ETSIAAB, Ave Puerta Hierro,2-4,Ciudad Univ, Madrid 28040, Spain
关键词
Savitzky-Golay filter; Whittaker filter; fast Fourier transform filter; maximum value filter; interpolating efficiency indicator; vegetation dynamics; WATER-USE EFFICIENCY; MEDITERRANEAN REGION; WINTER-WHEAT; NDVI; PHENOLOGY; AVHRR; CLASSIFICATION; LANDSAT; QUALITY; REFLECTANCE;
D O I
10.3390/rs16162980
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Sentinel-2 NDVI time series information content from 2017 to 2023 at a 10 m spatial resolution was evaluated based on the NDVI temporal dependency in five scenarios in central Spain. First, time series were interpolated and then filtered using the Savitzky-Golay, Fast Fourier Transform, Whittaker, and Maximum Value filters. Temporal dependency was assessed using the Q-Ljung-Box and Fisher's Kappa tests, and similarity between raw and filtered time series was assessed using Correlation Coefficient and Root Mean Square Error. An Interpolating Efficiency Indicator (IEI) was proposed to summarize the number and temporal distribution of low-quality observations. Type of climate, atmospheric disturbances, land cover dynamics, and management were the main sources of variability in five scenarios: (1) rainfed wheat and barley presented high short-term variability due to clouds (lower IEI in winter and spring) during the growing cycle and high interannual variability due to precipitation; (2) maize showed stable summer cycles (high IEI) and low interannual variability due to irrigation; (3) irrigated alfalfa was cut five to six times during summer, resulting in specific intra-annual variability; (4) beech forest showed a strong and stable summer cycle, despite the short-term variability due to clouds (low IEI); and (5) evergreen pine forest had a highly variable growing cycle due to fast responses to temperature and precipitation through the year and medium IEI values. Interpolation after removing non-valid observations resulted in an increase in temporal dependency (Q-test), particularly a short term in areas with low IEI values. The information improvement made it possible to identify hidden periodicities and trends using the Fisher's Kappa test. The SG filter showed high similarity values and weak influence on dynamics, while the MVF showed an overestimation of the NDVI values.
引用
收藏
页数:26
相关论文
共 92 条
[1]   Short-time-series grassland mapping using Sentinel-2 imagery and deep learning-based architecture [J].
Abdollahi, Abolfazl ;
Liu, Yuxia ;
Pradhan, Biswajeet ;
Huete, Alfredo ;
Dikshit, Abhirup ;
Ngoc Nguyen Tran .
EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2022, 25 (03) :673-685
[2]   Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review [J].
Aguilera, Eduardo ;
Diaz-Gaona, Cipriano ;
Garcia-Laureano, Raquel ;
Reyes-Palomo, Carolina ;
Guzman, Gloria, I ;
Ortolani, Livia ;
Sanchez-Rodriguez, Manuel ;
Rodriguez-Estevez, Vicente .
AGRICULTURAL SYSTEMS, 2020, 181
[3]   Multi-Season Phenology Mapping of Nile Delta Croplands Using Time Series of Sentinel-2 and Landsat 8 Green LAI [J].
Amin, Eatidal ;
Belda, Santiago ;
Pipia, Luca ;
Szantoi, Zoltan ;
El Baroudy, Ahmed ;
Moreno, Jose ;
Verrelst, Jochem .
REMOTE SENSING, 2022, 14 (08)
[4]  
[Anonymous], 1988, FAO/UNESCO Soil Map of the World. Revised Legend
[5]   Could land surface phenology be used to discriminate Mediterranean pine species? [J].
Aragones, David ;
Rodriguez-Galiano, Victor F. ;
Caparros-Santiago, Jose A. ;
Navarro-Cerrillo, Rafael M. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 78 :281-294
[6]   Present and future Koppen-Geiger climate classification maps at 1-km resolution [J].
Beck, Hylke E. ;
Zimmermann, Niklaus E. ;
McVicar, Tim R. ;
Vergopolan, Noemi ;
Berg, Alexis ;
Wood, Eric F. .
SCIENTIFIC DATA, 2018, 5
[7]   A ground-validated NDVI dataset for monitoring vegetation dynamics and mapping phenology in Fennoscandia and the Kola peninsula [J].
Beck, P. S. A. ;
Jonsson, P. ;
Hogda, K.-A. ;
Karlsen, S. R. ;
Eklundh, L. ;
Skidmore, A. K. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (19) :4311-4330
[8]  
Buys-Ballot C.H.D., 1847, Les Changements Priodiques de Temprature, Dpendants de La Nature Du Soleil et de La Lune, Mis En Rapport Avec Le Pronostic Du Temps, Dduits dobservations Nerlandaises de 1729 1846
[9]   Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data [J].
Cai, Yaotong ;
Lin, Hui ;
Zhang, Meng .
ADVANCES IN SPACE RESEARCH, 2019, 64 (11) :2233-2244
[10]   A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter [J].
Cao, Ruyin ;
Chen, Yang ;
Shen, Miaogen ;
Chen, Jin ;
Zhou, Jin ;
Wang, Cong ;
Yang, Wei .
REMOTE SENSING OF ENVIRONMENT, 2018, 217 :244-257