Development of an X-ray imaging camera for targeted radionuclide therapy with astatine-211

被引:2
作者
Kusano, Hiroki [1 ]
Kusumoto, Tamon [1 ]
Hasegawa, Sumitaka [1 ]
Kodaira, Satoshi [1 ]
机构
[1] Natl Inst Quantum Sci & Technol, 4-9-1 Anagawa, Inage, Chiba 2638555, Japan
关键词
X-ray imaging detector; Position-sensitive detector; Scintillator; Targeted radionuclide therapy; Astatine-211;
D O I
10.1016/j.radmeas.2024.107247
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The alpha-particle targeted radionuclide therapy (TRT) has been actively investigated for cancer treatment, and astatine-211 (211At) is one of the promising alpha-particle emitters. To evaluate the efficacy of radioactive pharmaceuticals, it is necessary to understand the 211At distribution in a body to accurately assess radiation dose in the targeted cells. In this study, an X-ray imaging camera was developed to investigate an in vivo 211At imaging technique for the alpha-particle TRT, especially to apply for small animal investigations. The design of the X-ray imaging camera was optimized to measure Po K X-rays (77-92 keV) emitted during 211At decay. It comprised a monolithic NaI(Tl) scintillator, a position-sensitive photomultiplier, and a tungsten pinhole collimator. The intrinsic performance evaluation of the position-sensitive X-ray detector exhibited good energy resolution, spatial resolution, and response uniformity. Using point-like 211At sources, the 211At distribution was successfully obtained by the X-ray camera with a useful field-of-view of 20.4 x 20.4 mm2, a system spatial resolution of 1.6 mm, and a sensitivity of 2.4 x 10-4, equivalent to 101 cps/MBq, on the collimator axis at a 12.5 mm distance. This study demonstrated the imaging capability of 211At with high sensitivity and spatial resolution by the X-ray imaging camera with a pinhole collimator.
引用
收藏
页数:6
相关论文
共 25 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Geant4 developments and applications [J].
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Dubois, PA ;
Asai, M ;
Barrand, G ;
Capra, R ;
Chauvie, S ;
Chytracek, R ;
Cirrone, GAP ;
Cooperman, G ;
Cosmo, G ;
Cuttone, G ;
Daquino, GG ;
Donszelmann, M ;
Dressel, M ;
Folger, G ;
Foppiano, F ;
Generowicz, J ;
Grichine, V ;
Guatelli, S ;
Gumplinger, P ;
Heikkinen, A ;
Hrivnacova, I ;
Howard, A ;
Incerti, S ;
Ivanchenko, V ;
Johnson, T ;
Jones, F ;
Koi, T ;
Kokoulin, R ;
Kossov, M ;
Kurashige, H ;
Lara, V ;
Larsson, S ;
Lei, F ;
Link, O ;
Longo, F ;
Maire, M ;
Mantero, A ;
Mascialino, B ;
McLaren, I ;
Lorenzo, PM ;
Minamimoto, K ;
Murakami, K ;
Nieminen, P ;
Pandola, L ;
Parlati, S ;
Peralta, L .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) :270-278
[3]  
Allison J., 2016, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip., V835, P186, DOI DOI 10.1016/J.NIMA.2016.06.125
[4]   LaBr3:Ce and NaI:Tl performance comparison for single photon emission detector [J].
Bettiol, M. ;
Preziosi, E. ;
Borrazzo, C. ;
Polito, C. ;
Cinti, M. N. ;
Pellegrini, R. ;
Pani, R. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 912 :154-157
[5]   The potential and hurdles of targeted alpha therapy - clinical trials and beyond [J].
Eigqvist, Jorgen ;
Frosts, Sofia ;
Pouget, Jean-Pierre ;
Albertsson, Per .
FRONTIERS IN ONCOLOGY, 2014, 3
[6]   Study of position reconstruction of a LaBr3: Ce continuous scintillation crystal for medical applications [J].
Fabbri, A. ;
Sacco, D. ;
Bennati, P. ;
Baroncelli, A. ;
Galasso, M. ;
Cinti, M. N. ;
Pellegrini, R. ;
Pani, R. ;
Cencelli, V. O. .
JOURNAL OF INSTRUMENTATION, 2013, 8
[7]   QUANTITATION OF AT-211 IN SMALL VOLUMES FOR EVALUATION OF TARGETED RADIOTHERAPY IN ANIMAL-MODELS [J].
JOHNSON, EL ;
TURKINGTON, TG ;
JASZCZAK, RJ ;
GILLAND, DR ;
VAIDYANATHAN, G ;
GREER, KL ;
COLEMAN, RE ;
ZALUTSKY, MR .
NUCLEAR MEDICINE AND BIOLOGY, 1995, 22 (01) :45-54
[8]   Effect of pinhole shape on projection resolution [J].
Johnson, L. C. ;
Moore, S. C. ;
Metzler, S. D. .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (05) :2003-2013
[9]   Evidence of Local Concentration of α-Particles from 211At-Labeled Antibodies in Liver Metastasis Tissue [J].
Kodaira, Satoshi ;
Morokoshi, Yukie ;
Li, Huizi Keiko ;
Konishi, Teruaki ;
Kurano, Mieko ;
Hasegawa, Sumitaka .
JOURNAL OF NUCLEAR MEDICINE, 2019, 60 (04) :497-501
[10]   Validating α-particle emission from 211 At-labeled antibodies in single cells for cancer radioimmunotherapy using CR-39 plastic nuclear track detectors [J].
Kodaira, Satoshi ;
Li, Huizi Keiko ;
Konishi, Teruaki ;
Kitamura, Hisashi ;
Kurano, Mieko ;
Hasegawa, Sumitaka .
PLOS ONE, 2017, 12 (06)