Visualizing Brain Synchronization: An Explainable Representation of Phase-Amplitude Coupling

被引:0
作者
Ortiz, Andres [1 ,2 ]
Gallego-Molina, Nicolas J. [1 ,2 ]
Castillo-Barnes, Diego [1 ,2 ]
Rodriguez-Rodrguez, Ignacio [1 ,2 ]
Gorriz, Juan M. [3 ]
机构
[1] Univ Malaga, Commun Engn Dept, Malaga 29004, Spain
[2] Andalusian Data Sci & Computat Intelligence Inst, Granada, Spain
[3] Univ Granada, Dept Signal Theory Networking & Commun, Granada, Spain
来源
ARTIFICIAL INTELLIGENCE FOR NEUROSCIENCE AND EMOTIONAL SYSTEMS, PT I, IWINAC 2024 | 2024年 / 14674卷
关键词
Cross-Frequency-Coupling; Phase-Amplitude Coupling; Brain connectivity; Dyslexia;
D O I
10.1007/978-3-031-61140-7_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the realm of neuroscience, brain activity is often characterized by rhythmic oscillations at different frequency bands. These oscillations underlie various cognitive processes and constitutes the basis of communication between populations of neurons. Cross-frequency coupling (CFC) refers to techniques directed to study the interactions between oscillations at different frequencies, providing a more comprehensive view of neural dynamics than traditional measures of connectivity or based on the distribution of the power spectral density. In this paper, we propose a method to explore CFC local patterns in an explainable way, allowing to visualize them over time and to easily identify functional brain areas activated during a task development from the Phase-Amplitude Coupling (PAC) point of view.
引用
收藏
页码:14 / 23
页数:10
相关论文
共 19 条
  • [1] [Anonymous], Leeduca project
  • [2] [Anonymous], 2016, Learning Representations from EEG with Deep Recurrent -Convolutional Neural Networks
  • [3] Attaheri A, 2021, bioRxiv, DOI [10.1101/2020.10.12.329326, 10.1101/2020.10.12.329326, DOI 10.1101/2020.10.12.329326]
  • [4] The functional role of cross-frequency coupling
    Canolty, Ryan T.
    Knight, Robert T.
    [J]. TRENDS IN COGNITIVE SCIENCES, 2010, 14 (11) : 506 - 515
  • [5] Cohen MX, 2014, ISS CLIN COGN NEUROP, P1
  • [6] A longitudinal study investigating neural processing of speech envelope modulation rates in children with (a family risk for) dyslexia
    De Vos, Astrid
    Vanvooren, Sophie
    Vanderauwera, Jolijn
    Ghesquiere, Pol
    Wouters, Jan
    [J]. CORTEX, 2017, 93 : 206 - 219
  • [7] Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia
    Di Liberto, Giovanni M.
    Peter, Varghese
    Kalashnikova, Marina
    Goswami, Usha
    Burnham, Denis
    Lalor, Edmund C.
    [J]. NEUROIMAGE, 2018, 175 : 70 - 79
  • [8] Duin RPW, 2000, INT C PATT RECOG, P1, DOI 10.1109/ICPR.2000.906006
  • [9] Greedy function approximation: A gradient boosting machine
    Friedman, JH
    [J]. ANNALS OF STATISTICS, 2001, 29 (05) : 1189 - 1232
  • [10] Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends
    Gorriz, J. M.
    Avarez-Illan, I.
    Avarez-Marquina, A.
    Arco, J. E.
    Atzmueller, M.
    Ballarini, F.
    Barakova, E.
    Bologna, G.
    Bonomini, P.
    Castellanos-Dominguez, G.
    Castillo-Barnes, D.
    Cho, S. B.
    Contreras, R.
    Cuadra, J. M.
    Dominguez, E.
    Dominguez-Mateos, F.
    Duro, R. J.
    Elizondo, D.
    Fernandez-Caballero, A.
    Fernandez-Jover, E.
    Formoso, M. A.
    Gallego-Molina, N. J.
    Gamazo, J.
    Gonzalez, J. Garcia
    Garcia-Rodriguez, J.
    Garre, C.
    Garrigos, J.
    Gomez-Rodellar, A.
    Gomez-Vilda, P.
    Grana, M.
    Guerrero-Rodriguez, B.
    Hendrikse, S. C. F.
    Jimenez-Mesa, C.
    Jodra-Chuan, M.
    Julian, V.
    Kotz, G.
    Kutt, K.
    Leming, M.
    de Lope, J.
    Macas, B.
    Marrero-Aguiar, V.
    Martinez, J. J.
    Martinez-Murcia, F. J.
    Martinez-Tomas, R.
    Mekyska, J.
    Nalepa, G. J.
    Novais, P.
    Orellana, D.
    Ortiz, A.
    Palacios-Alonso, D.
    [J]. INFORMATION FUSION, 2023, 100