Advanced electrolytes for high-performance aqueous zinc-ion batteries

被引:27
|
作者
Wei, Jie [1 ,2 ]
Zhang, Pengbo [1 ]
Sun, Jingjie [1 ]
Liu, Yuzhu [1 ]
Li, Fajun [3 ]
Xu, Haifeng [3 ]
Ye, Ruquan [4 ]
Tie, Zuoxiu [1 ]
Sun, Lin [1 ,5 ]
Jin, Zhong [1 ]
机构
[1] Nanjing Univ, State Key Lab Coordinat Chem, MOE Key Lab High Performance Polymer Mat & Technol, Jiangsu Key Lab Adv Organ Mat,Sch Chem & Chem Engn, Nanjing 210023, Jiangsu, Peoples R China
[2] Suzhou Lab, Energy & Environm Mat Res Dept, Suzhou 215123, Peoples R China
[3] Suzhou Univ, Sch Chem & Chem Engn, Suzhou 234000, Anhui, Peoples R China
[4] City Univ Hong Kong, Dept Chem, State Key Lab Marine Pollut, Hong Kong 999077, Peoples R China
[5] Yancheng Inst Technol, Sch Chem & Chem Engn, Key Lab Adv Technol Environm Protect Jiangsu Prov, Yancheng 224051, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
DEEP EUTECTIC SOLVENTS; METAL ANODES; SALT ELECTROLYTE; WATER; INTERFACE;
D O I
10.1039/d4cs00584h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous zinc-ion batteries (AZIBs) have garnered significant attention in the realm of large-scale and sustainable energy storage, primarily owing to their high safety, low cost, and eco-friendliness. Aqueous electrolytes, serving as an indispensable constituent, exert a direct influence on the electrochemical performance and longevity of AZIBs. Nonetheless, conventional aqueous electrolytes often encounter formidable challenges in AZIB applications, such as the limited electrochemical stability window and the zinc dendrite growth. In response to these hurdles, a series of advanced aqueous electrolytes have been proposed, such as "water-in-salt" electrolytes, aqueous eutectic electrolytes, molecular crowding electrolytes, and hydrogel electrolytes. This comprehensive review commences by presenting an in-depth overview of the fundamental compositions, principles, and distinctive characteristics of various advanced aqueous electrolytes for AZIBs. Subsequently, we systematically scrutinizes the recent research progress achieved with these advanced aqueous electrolytes. Furthermore, we summarizes the challenges and bottlenecks associated with these advanced aqueous electrolytes, along with offering recommendations. Based on the optimization of advanced aqueous electrolytes, this review outlines future directions and potential strategies for the development of high-performance AZIBs. This review is anticipated to provide valuable insights into the development of advanced electrolyte systems for the next generation of stable and sustainable multi-valent secondary batteries. This review presents an comprehensive overview of various advanced aqueous electrolytes for aqueous zinc-ion batteries, including "water-in-salt" electrolytes, aqueous eutectic electrolytes, molecular crowding electrolytes, and hydrogel electrolytes.
引用
收藏
页码:10335 / 10369
页数:35
相关论文
共 50 条
  • [11] Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries
    Qin, Xing-hua
    Du, Ye-hong
    Zhang, Peng-chao
    Wang, Xin-yu
    Lu, Qiong-qiong
    Yang, Ai-kai
    Sun, Jun-cai
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2021, 28 (10) : 1684 - 1692
  • [12] Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries
    Huang, Shuo
    Zhu, Jiacai
    Tian, Jinlei
    Niu, Zhiqiang
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (64) : 14480 - 14494
  • [13] Modification of Zinc Anodes by In Situ ZnO Coating for High-Performance Aqueous Zinc-Ion Batteries
    Zhao, Wen
    Perera, Inosh Prabasha
    Khanna, Harshul S.
    Dang, Yanliu
    Li, Mingxuan
    Posada, Luisa F.
    Tan, Haiyan
    Suib, Steven L.
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (03) : 1172 - 1181
  • [14] High-Performance Fatigue-Resistant Dual- Polyrotaxane Hydrogel Electrolytes for Flexible Aqueous Zinc-Ion Batteries
    Xu, Junkang
    Zhu, Yiran
    Gui, Qinghua
    Sun, Shaogeng
    Zhao, Panfeng
    Mao, Lei
    Luo, Tianzhi
    SMALL, 2025,
  • [15] Improvements and Challenges of Hydrogel Polymer Electrolytes for Advanced Zinc Anodes in Aqueous Zinc-Ion Batteries
    Peng, Huili
    Wang, Dongdong
    Zhang, Fenglong
    Yang, Lishan
    Jiang, Xiaolei
    Zhang, Kaiyuan
    Qian, Zhao
    Yang, Jian
    ACS NANO, 2024, 18 (33) : 21779 - 21803
  • [16] Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries
    Du, Min
    Miao, Zhenyu
    Li, Houzhen
    Sang, Yuanhua
    Liu, Hong
    Wang, Shuhua
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 19245 - 19281
  • [17] A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries
    Wang, Yiyun
    Wang, Xinlei
    Tang, Jian
    Tang, Weihua
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (26) : 13868 - 13875
  • [18] Antifreezing polymeric-acid electrolyte for high-performance aqueous zinc-ion batteries
    Zhao, Jingteng
    Song, Congying
    Ma, Shaobo
    Gao, Qixin
    Li, Zhujie
    Dai, Ying
    Li, Guoxing
    ENERGY STORAGE MATERIALS, 2023, 61
  • [19] Advances in application of sustainable lignocellulosic materials for high-performance aqueous zinc-ion batteries
    Huang, Yi
    Liu, Wei
    Lin, Chenxiao
    Hou, Qingxi
    Nie, Shuangxi
    NANO ENERGY, 2024, 123
  • [20] Recent advance and design strategies of chalcogenides for high-performance aqueous zinc-ion batteries
    Wang, Lujing
    Li, Shuyue
    Wang, Chunzhong
    Yao, Shiyu
    Chen, Gang
    Du, Fei
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (25)