Dynamics of a two-neuron hopfield neural network: Memristive synapse and autapses and impact of fractional order

被引:4
|
作者
Ramakrishnan, Balamurali [1 ]
Wang, Zhen [2 ]
Natiq, Hayder [3 ,4 ]
Pal, Nikhil [5 ]
Rajagopal, Karthikeyan [1 ]
Jafari, Sajad [6 ,7 ]
机构
[1] Chennai Inst Technol, Ctr Nonlinear Syst, Chennai, India
[2] Yanan Univ, Sch Math & Comp Sci, Yanan 716000, Peoples R China
[3] Minist Higher Educ & Sci Res, Baghdad 10024, Iraq
[4] Imam Jaafar Al Sadiq Univ, Coll Informat Technol, Dept Comp Technol Engn, Baghdad, Iraq
[5] Visva Bharati, Dept Math, Santini Ketan 731235, West Bengal, India
[6] Amirkabir Univ Technol, Hlth Technol Res Inst, Tehran 1591634311, Iran
[7] Amirkabir Univ Technol, Dept Biomed Engn, Tehran 1591634311, Iran
关键词
Hopfield neural network; Memristive synapse; Memristive autapse; Fractional order; SYSTEM; ANALOG; MODEL;
D O I
10.1016/j.aeue.2024.155506
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
There are numerous studies on Hopfield neural networks with electromagnetic induction using memristors in either autaptic or synaptic connections. In this study, we explore a novel scenario where all connections are influenced by electromagnetic induction. We investigate and compare the network's dynamics with one memristive autapse, two memristive autapses, and a memristive synapse. The results indicate that having two memristive autapses instead of one increases the dynamical range, leading to chaotic dynamics in unequal autaptic strengths. In contrast, in the presence of the memristive synapse, chaos can emerge only in very strong synaptic strength. Using fractional-order derivatives can transform the periodic attractor of the integer-order model into a chaotic one in some parameters. Furthermore, incorporating more memristors leads to chaos at lower fractional orders.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Slow-fast dynamics of tri-neuron Hopfield neural network with two timescales
    Zheng, Y. G.
    Bao, L. J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (05) : 1591 - 1599
  • [32] Dynamics analysis and cryptographic implementation of a fractional-order memristive cellular neural network model
    Zhou, Xinwei
    Jiang, Donghua
    Nkapkop, Jean De Dieu
    Ahmad, Musheer
    Fossi, Jules Tagne
    Tsafack, Nestor
    Wu, Jianhua
    CHINESE PHYSICS B, 2024, 33 (04)
  • [33] Dynamics analysis and cryptographic implementation of a fractional-order memristive cellular neural network model
    周新卫
    蒋东华
    Jean De Dieu Nkapkop
    Musheer Ahmad
    Jules Tagne Fossi
    Nestor Tsafack
    吴建华
    Chinese Physics B, 2024, 33 (04) : 213 - 228
  • [34] A Novel Fractional-Order Cascade Tri-Neuron Hopfield Neural Network: Stability, Bifurcations, and Chaos
    Kumar, Pushpendra
    Lee, Tae H.
    Erturk, Vedat Suat
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)
  • [35] Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application
    Deng, Quanli
    Wang, Chunhua
    Lin, Hairong
    CHAOS SOLITONS & FRACTALS, 2024, 178
  • [36] Dynamic Analysis and Audio Encryption Application in IoT of a Multi-Scroll Fractional-Order Memristive Hopfield Neural Network
    Yu, Fei
    Yu, Qiulin
    Chen, Huifeng
    Kong, Xinxin
    Mokbel, Abdulmajeed Abdullah Mohammed
    Cai, Shuo
    Du, Sichun
    FRACTAL AND FRACTIONAL, 2022, 6 (07)
  • [37] Initial Sensitive Dynamics in Memristor Synapse-coupled Hopfield Neural Network
    Chen, Mo
    Chen Chengjie
    Bao Bocheng
    Xu Quan
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (04) : 870 - 877
  • [38] Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation
    Yu, Xihong
    Bao, Han
    Chen, Mo
    Bao, Bocheng
    CHAOS SOLITONS & FRACTALS, 2023, 171
  • [39] Nonlinear Dynamics and Chaos in Fractional-Order Hopfield Neural Networks with Delay
    Huang, Xia
    Wang, Zhen
    Li, Yuxia
    ADVANCES IN MATHEMATICAL PHYSICS, 2013, 2013
  • [40] A Multistable Memristor and Its Application in Fractional-Order Hopfield Neural Network
    Mengjiao Wang
    Bingqing Deng
    Brazilian Journal of Physics, 2022, 52