Multiplicity and concentration behavior of solutions for magnetic Choquard equation with critical growth

被引:0
作者
Tang, Houzhi [1 ]
机构
[1] Anqing Normal Univ, Sch Math & Phys, Anqing 246133, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2024年 / 75卷 / 05期
关键词
Variational methods; Magnetic Choquard equation; Hardy-Littlewood-Sobolev critical exponent; NONLINEAR SCHRODINGER-EQUATION; EXISTENCE; STATES;
D O I
10.1007/s00033-024-02318-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following nonlinear Choquard equation with magnetic field {(epsilon i del-A(x))2u+V(x)u=epsilon mu-N integral RN|u(y)|2 & lowast;mu+F(|u(y)|2)|x-y|mu dy}(|u|2 & lowast;mu-2u+12 & lowast;mu f(|u|2)u)inRN,u is an element of H1(RN,C) where epsilon>0 is a small parameter,N >= 3, 0<mu<N,2 & lowast;mu=2N-mu N-2,V(x):RN -> RNandA(x):RN -> RN is a continuous potential,fis a continuous subcritical term, andFis the primitive function off. Under a local assumption onthe potentialV, by the variational methods, the penalization techniques and the Ljusternik-Schnirelmann theory, we prove the multiplicity and concentration properties of nontrivial solutions of the above problem for epsilon>0 small enough
引用
收藏
页数:32
相关论文
共 43 条
  • [1] On a periodic Schrodinger equation with nonlocal superlinear part
    Ackermann, N
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (02) : 423 - 443
  • [2] Singularly perturbed critical Choquard equations
    Alves, Claudianor O.
    Gao, Fashun
    Squassina, Marco
    Yang, Minbo
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) : 3943 - 3988
  • [3] Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    Yang, Minbo
    [J]. ASYMPTOTIC ANALYSIS, 2016, 96 (02) : 135 - 159
  • [4] Multiple Solutions for a Semilinear Elliptic Equation with Critical Growth and Magnetic Field
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    [J]. MILAN JOURNAL OF MATHEMATICS, 2014, 82 (02) : 389 - 405
  • [5] Multiple Solutions for a Nonlinear Schrodinger Equation with Magnetic Fields
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    Furtado, Marcelo F.
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (09) : 1565 - 1586
  • [6] Ambrosetti A, 2007, CONTEMP MATH, V446, P19
  • [7] Existence and concentration results for some fractional Schrodinger equations in with magnetic fields
    Ambrosio, Vincenzo
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2019, 44 (08) : 637 - 680
  • [8] Nonlinear fractional magnetic Schrodinger equation: Existence and multiplicity
    Ambrosio, Vincenzo
    d'Avenia, Pietro
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (05) : 3336 - 3368
  • [9] A semilinear Schrodinger equation in the presence of a magnetic field
    Arioli, G
    Szulkin, A
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (04) : 277 - 295
  • [10] Nonlinear perturbations of a periodic magnetic Choquard equation with Hardy-Littlewood-Sobolev critical exponent
    Bueno, H.
    da Hora Lisboa, N.
    Vieira, L. L.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04):