Theoretical study of electrochemical reduction of CO2 to CO using a nickel-N4-Schiff base complex

被引:0
作者
Santiwarodom, Wilasinee [1 ]
Apilardmongkol, Pavee [1 ]
Kuamit, Thanawit [1 ]
Parasuk, Vudhichai [1 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Ctr Excellence Computat Chem CECC, Dept Chem, Bangkok 10330, Thailand
关键词
CARBON-DIOXIDE; PHOTOCHEMICAL CONVERSION; CATALYTIC CONVERSION; DFT; FUNCTIONALS; GRAPHENE; METHANE;
D O I
10.1039/d4cp02521k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical reduction (ECR) of CO2 to CO by nickel-N-4-Schiff base complexes as catalysts was investigated using density functional theory (DFT). Three nickel complexes, 1-Ni, 2-Ni, and [2-Ni](Me) were considered. Two CO2 reduction pathways, i.e., external and internal proton transfer, were proposed and their reaction energy profiles were computed. The external proton transfer pathway which includes three steps has no transition state. The reaction energies for all steps are exothermic and the reaction catalyzed by 1-Ni has the lowest overall reaction energy (-5.72 eV) followed by those by 2-Ni (-5.56 eV) and [2-Ni](Me) (-5.54 eV). The internal proton transfer pathway is composed of four steps. The internal proton transfer step (carboxylic formation) includes a transition state. The CO2 reduction by [2-Ni](Me) could not proceed via this mechanism, since [2-Ni](Me) does not have an NH group in the ligand and 1-Ni has a lower activation energy (0.83 eV), which is in agreement with the experiment. The charge of the pre-adsorption nickel complex seems to be related to the activity of the catalysts. The catalyst with a less positive nickel charge is more active.
引用
收藏
页码:24068 / 24077
页数:10
相关论文
共 50 条
  • [41] Electrochemical reduction of CO2 and N2 to synthesize urea on metal-nitrogen-doped carbon catalysts: a theoretical study
    Zhang, Zhijia
    Guo, Ling
    DALTON TRANSACTIONS, 2021, 50 (32) : 11158 - 11166
  • [42] Amines as Reaction Environment Regulator for CO2 Electrochemical Reduction to CH4
    Aeshala, Leela Manohar
    Verma, Anil
    MACROMOLECULAR SYMPOSIA, 2015, 357 (01) : 79 - 85
  • [43] Ionic liquids for CO2 electrochemical reduction
    Li, Fangfang
    Mocci, Francesca
    Zhang, Xiangping
    Ji, Xiaoyan
    Laaksonen, Aatto
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 31 : 75 - 93
  • [44] Superstructured metallocorroles for electrochemical CO2 reduction
    Sinha, Woormileela
    Mahammed, Atif
    Fridman, Natalia
    Diskin-Posner, Yael
    Shimon, Linda J. W.
    Gross, Zeev
    CHEMICAL COMMUNICATIONS, 2019, 55 (79) : 11912 - 11915
  • [45] Theoretical understanding of the electrochemical reaction barrier: a kinetic study of CO2 reduction reaction on copper electrodes
    Gao, Shu-Ting
    Xiang, Shi-Qin
    Shi, Jun-Lin
    Zhang, Wei
    Zhao, Liu-Bin
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (17) : 9607 - 9615
  • [46] Electrolyte Effects on the Electrochemical Reduction of CO2
    Moura de Salles Pupo, Marilia
    Kortlever, Ruud
    CHEMPHYSCHEM, 2019, 20 (22) : 2926 - 2935
  • [47] Electrochemical Reduction of CO2 at Copper Nanofoams
    Sen, Sujat
    Liu, Dan
    Palmore, G. Tayhas R.
    ACS CATALYSIS, 2014, 4 (09): : 3091 - 3095
  • [48] Integrated electrochemical CO2 reduction and hydroformylation
    Jolly, Brandon J.
    Pung, Michael J.
    Liu, Chong
    DALTON TRANSACTIONS, 2024, 53 (47) : 18834 - 18838
  • [49] Photocatalytic CO2 reduction using a Mn complex as a catalyst
    Takeda, Hiroyuki
    Koizumi, Hiroki
    Okamoto, Kouhei
    Ishitani, Osamu
    CHEMICAL COMMUNICATIONS, 2014, 50 (12) : 1491 - 1493
  • [50] Electrochemical reduction of CO2 to HCOOH on a synthesized Sn electrocatalyst using a Co3O4 anode
    Yadav, V. S. K.
    Purkait, M. K.
    RSC ADVANCES, 2015, 5 (84): : 68551 - 68557