Theoretical study of electrochemical reduction of CO2 to CO using a nickel-N4-Schiff base complex

被引:0
|
作者
Santiwarodom, Wilasinee [1 ]
Apilardmongkol, Pavee [1 ]
Kuamit, Thanawit [1 ]
Parasuk, Vudhichai [1 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Ctr Excellence Computat Chem CECC, Dept Chem, Bangkok 10330, Thailand
关键词
CARBON-DIOXIDE; PHOTOCHEMICAL CONVERSION; CATALYTIC CONVERSION; DFT; FUNCTIONALS; GRAPHENE; METHANE;
D O I
10.1039/d4cp02521k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical reduction (ECR) of CO2 to CO by nickel-N-4-Schiff base complexes as catalysts was investigated using density functional theory (DFT). Three nickel complexes, 1-Ni, 2-Ni, and [2-Ni](Me) were considered. Two CO2 reduction pathways, i.e., external and internal proton transfer, were proposed and their reaction energy profiles were computed. The external proton transfer pathway which includes three steps has no transition state. The reaction energies for all steps are exothermic and the reaction catalyzed by 1-Ni has the lowest overall reaction energy (-5.72 eV) followed by those by 2-Ni (-5.56 eV) and [2-Ni](Me) (-5.54 eV). The internal proton transfer pathway is composed of four steps. The internal proton transfer step (carboxylic formation) includes a transition state. The CO2 reduction by [2-Ni](Me) could not proceed via this mechanism, since [2-Ni](Me) does not have an NH group in the ligand and 1-Ni has a lower activation energy (0.83 eV), which is in agreement with the experiment. The charge of the pre-adsorption nickel complex seems to be related to the activity of the catalysts. The catalyst with a less positive nickel charge is more active.
引用
收藏
页码:24068 / 24077
页数:10
相关论文
共 50 条
  • [1] Theoretical Study on the Mechanism of the Electrocatalytic CO2 Reduction to Formate by an Iron Schiff Base Complex
    Zhang, Ya-Qiong
    Chen, Jia-Yi
    Li, Man
    Liao, Rong-Zhen
    INORGANIC CHEMISTRY, 2025, 64 (09) : 4657 - 4672
  • [2] Electrochemical CO2 and Proton Reduction by a Co(dithiacyclam) Complex
    Iffland, Linda
    Siegmund, Daniel
    Apfel, Ulf-Peter
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2020, 646 (13): : 746 - 753
  • [3] Perspective on Theoretical Models for CO2 Electrochemical Reduction
    Zhang, Xu
    Zhou, Zhen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (08): : 3820 - 3829
  • [4] Electrochemical CO2 reduction on graphdiyne: a DFT study
    Liu, Tianfu
    Wang, Qi
    Wang, Guoxiong
    Bao, Xinhe
    GREEN CHEMISTRY, 2021, 23 (03) : 1212 - 1219
  • [5] Graphene Supported Tungsten Carbide as Catalyst for Electrochemical Reduction of CO2
    Ananthaneni, Sahithi
    Smith, Zachery
    Rankin, Rees B.
    CATALYSTS, 2019, 9 (07):
  • [6] Homogeneous Electrochemical Reduction of CO2 to CO by a Cobalt Pyridine Thiolate Complex
    Ahmed, Md Estak
    Rana, Atanu
    Saha, Rajat
    Dey, Subal
    Dey, Abhishek
    INORGANIC CHEMISTRY, 2020, 59 (08) : 5292 - 5302
  • [7] Antipoisoning Nickel-Carbon Electrocatalyst for Practical Electrochemical CO2 Reduction to CO
    Daiyan, Rahman
    Lu, Xunyu
    Tan, Xin
    Zhu, Xiaofeng
    Chen, Rui
    Smith, Sean C.
    Amal, Rose
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (11) : 8002 - 8009
  • [8] Molecularly dispersed nickel complexes on N-doped graphene for electrochemical CO2 reduction
    Juthathan, Methasit
    Chantarojsiri, Teera
    Chainok, Kittipong
    Butburee, Teera
    Thamyongkit, Patchanita
    Tuntulani, Thawatchai
    Leeladee, Pannee
    DALTON TRANSACTIONS, 2023, 52 (33) : 11407 - 11418
  • [9] Effect of Electrolyte on the Electrochemical Reduction of CO2
    Salazar-Villalpando, Maria D.
    ELECTROCHEMISTRY OF NOVEL MATERIALS FOR ENERGY STORAGE AND CONVERSION, 2011, 33 (27): : 77 - 88
  • [10] Electrochemical and photochemical CO2 reduction using diamond
    Yu, Siyu
    Yang, Nianjun
    Liu, Shetian
    Jiang, Xin
    CARBON, 2021, 175 (175) : 440 - 453