Machine learning approach reveals microbiome, metabolome, and lipidome profiles in type 1 diabetes

被引:6
|
作者
Tan, Huiling [1 ]
Shi, Yu [1 ]
Yue, Tong [1 ]
Zheng, Dongxue [1 ]
Luo, Sihui [1 ]
Weng, Jianping [1 ]
Zheng, Xueying [1 ]
机构
[1] Univ Sci & Technol China, Chinese Acad Sci Hefei, Affiliated Hosp USTC 1, Inst Endocrine & Metab Dis,Dept Endocrinol,Div Li, Hefei 230001, Anhui, Peoples R China
关键词
Type 1 diabetes mellitus; Machine learning; Gut microbiota; Serum metabolites; Serum lipids; CHAIN FATTY-ACIDS; NANOCOMPOSITES;
D O I
10.1016/j.jare.2023.11.025
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Introduction: Type 1 diabetes (T1D) is a complex disorder influenced by genetic and environmental factors. The gut microbiome, the serum metabolome, and the serum lipidome have been identified as key environmental factors contributing to the pathophysiological mechanisms of T1D. Objectives: We aimed to explore the gut microbiota, serum metabolite, and serum lipid signatures in T1D patients by machine learning. Methods: We evaluated 137 individuals in a cross-sectional cohort involving 38 T1D patients, 38 healthy controls, and 61 T1D patients for validation. We characterized gut microbiome, serum metabolite, and serum lipid profiles with machine learning approaches (logistic regression, support vector machine, Gaussian naive Bayes, and random forest). Results: The machine learning approaches using the microbiota composition did not accurately diagnose T1D (model accuracy = 0.7555), while the accuracy of the model using the metabolite composition was 0.9333. Based on the metabolite composition, 3-hydroxybutyric acid and 9-oxo-ode (area under curve = 0.70 and 0.67, respectively, both increased in T1D) were meaningful overlap metabolites screened by multiple bioinformatics methods. We confirmed the biological relevance of the microbiome, metabolome, and lipidome features in the validation group. Conclusion: By using machine learning algorithms and multi-omics, we demonstrated that T1D patients are associated with altered microbiota, metabolite, and lipidomic signatures or functions. (c) 2024 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:213 / 221
页数:9
相关论文
共 50 条
  • [41] Dynamics of Plasma Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes - Type 1 Diabetes Prediction and Prevention Study (DIPP)
    Lamichhane, Santosh
    Ahonen, Linda
    Dyrlund, Thomas Sparholt
    Kemppainen, Esko
    Siljander, Heli
    Hyoty, Heikki
    Ilonen, Jorma
    Toppari, Jorma
    Veijola, Riitta
    Hyotylainen, Tuulia
    Knip, Mikael
    Oresic, Matej
    SCIENTIFIC REPORTS, 2018, 8
  • [42] Type 1 diabetes: metabolome changes examined during pregnancy
    Kessing, Richard
    DIABETOLOGIE UND STOFFWECHSEL, 2024, 19 (02) : 106 - 106
  • [43] Dynamics of Plasma Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes – Type 1 Diabetes Prediction and Prevention Study (DIPP)
    Santosh Lamichhane
    Linda Ahonen
    Thomas Sparholt Dyrlund
    Esko Kemppainen
    Heli Siljander
    Heikki Hyöty
    Jorma Ilonen
    Jorma Toppari
    Riitta Veijola
    Tuulia Hyötyläinen
    Mikael Knip
    Matej Oresic
    Scientific Reports, 8
  • [44] Renal function dominates the landscape of the metabolome in type 1 diabetes
    Suvitaival, T.
    Tofte, N.
    Mattila, I.
    Trost, K.
    Theilade, S.
    Winther, S.
    Ahluwalia, T.
    Frimodt-Moller, M.
    Rossing, P.
    Legido-Quigley, C.
    DIABETOLOGIA, 2019, 62 : S455 - S456
  • [45] Prognostic Risk Profiles for Dementia: A Machine Learning Approach
    Morgenstern, Jason
    Daley, Mark
    Hachinski, Vladimir
    NEUROLOGY, 2016, 86
  • [46] A Machine Learning Approach to Predicting Diabetes Complications
    Jian, Yazan
    Pasquier, Michel
    Sagahyroon, Assim
    Aloul, Fadi
    HEALTHCARE, 2021, 9 (12)
  • [47] Cord-Blood Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes
    Lamichhane, Santosh
    Ahonen, Linda
    Dyrlund, Thomas Sparholt
    Dickens, Alex M.
    Siljander, Heli
    Hyoty, Heikki
    Ilonen, Jorma
    Toppari, Jorma
    Veijola, Riitta
    Hyotylainen, Tuulia
    Knip, Mikael
    Oresic, Matej
    BIOMOLECULES, 2019, 9 (01):
  • [48] Predicting incident heart failure in patients with type ii diabetes: A machine a learning approach
    Kaur, N.
    Pellicori, P.
    Deligianni, F.
    Jones, Y.
    Friday, J. M.
    Cleland, J. G. F.
    EUROPEAN JOURNAL OF HEART FAILURE, 2023, 25 : 427 - 427
  • [49] Machine Learning Approach to Metabolomic Data Predicts Type 2 Diabetes Mellitus Incidence
    Leiherer, Andreas
    Muendlein, Axel
    Mink, Sylvia
    Mader, Arthur
    Saely, Christoph H.
    Festa, Andreas
    Fraunberger, Peter
    Drexel, Heinz
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (10)
  • [50] Lipidome characterisation and sex-specific differences in type 1 and type 2 diabetes mellitus
    Barranco-Altirriba, Maria
    Alonso, Nuria
    Weber, Ralf J. M.
    Lloyd, Gavin R.
    Hernandez, Marta
    Yanes, Oscar
    Capellades, Jordi
    Jankevics, Andris
    Winder, Catherine
    Falguera, Mireia
    Franch-Nadal, Josep
    Dunn, Warwick B.
    Perera-Lluna, Alexandre
    Castelblanco, Esmeralda
    Mauricio, Didac
    CARDIOVASCULAR DIABETOLOGY, 2024, 23 (01)