Predictive Model for Opioid Use Disorder in Chronic Pain: A Development and Validation Study

被引:0
作者
Escorial, Monica [1 ]
Muriel, Javier [1 ,2 ]
Margarit, Cesar [3 ]
Agullo, Laura [1 ]
Zandonai, Thomas [1 ,2 ,4 ]
Panadero, Ana [3 ]
Morales, Domingo [5 ]
Peiro, Ana M. [1 ,2 ,6 ]
机构
[1] Alicante Inst Hlth & Biomed Res ISABIAL, Diagnost Ctr, Clin Pharmacol Dept, Pharmacogenet Unit, Gray Bldg,5th Floor,Avda Pintor Baeza 12, Alicante 03010, Spain
[2] Miguel Hernandez Univ Elche, Dept Pharmacol Paediat & Organ Chem, Sant Joan De Alicante 03550, Spain
[3] Dr Balmis Gen Univ Hosp, Pain Unit, ISABIAL, Alicante 03010, Spain
[4] Univ Trento, Dept Psychol & Cognit Sci, I-38060 Trento, Italy
[5] Univ Miguel Hernandez Elche, Operat Res Ctr, Elche 03202, Spain
[6] Miguel Hernandez Univ, Inst Bioengn, Elche 03202, Spain
关键词
opioid use disorder; predictive model; chronic non-cancer pain; chronic opioid use; ambulatory follow-up; prevention; POLYMORPHISM; ASSOCIATION; PREVALENCE; OPRM1;
D O I
10.3390/biomedicines12092056
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background/Objective: There are several questionnaires for the challenge of anticipating opioid use disorder (OUD). However, many are not specific for chronic non-cancer pain (CNCP) or have been developed in the American population, whose sociodemographic factors are very different from the Spanish population, leading to scarce translation into clinical practice. Thus, the aim of this study is to prospectively validate a predictive model for OUD in Spanish patients under long-term opioids. Methods: An innovative two-stage predictive model was developed from retrospective (n = 129) and non-overlapping prospective (n = 100) cohorts of real-world CNCP outpatients. All subjects used prescribed opioids for 6 or more months. Sociodemographic, clinical and pharmacological covariates were registered. Mu-opioid receptor 1 (OPRM1, A118G, rs1799971) and catechol-O-methyltransferase (COMT, G472A, rs4680) genetic variants plus cytochrome P450 2D6 (CYP2D6) liver enzyme phenotypes were also analyzed. The model performance and diagnostic accuracy were calculated. Results: The two-stage model comprised risk factors related to OUD (younger age, work disability and high daily opioid dose) and provided new useful information about other risk factors (low quality of life, OPRM-G allele and CYP2D6 extreme phenotypes). The validation showed a satisfactory accuracy (70% specificity and 75% sensitivity) for our predictive model with acceptable discrimination and goodness of fit. Conclusions: Our study presents the results of an innovative model for predicting OUD in our setting. After external validation, it could represent a change in the paradigm of opioid treatment, helping clinicians to better identify and manage the risks and reduce the side effects and complications.
引用
收藏
页数:11
相关论文
共 32 条
[1]   Quality of life and its correlated factors among patients with substance use disorders: a systematic review and meta-analysis [J].
Armoon, Bahram ;
Fleury, Marie-Josee ;
Bayat, Amir-Hossien ;
Bayani, Azadeh ;
Mohammadi, Rasool ;
Griffiths, Mark D. .
ARCHIVES OF PUBLIC HEALTH, 2022, 80 (01)
[2]  
Barrachina J., 2021, Arch Intern Med Res, V4, P084, DOI [10.26502/aimr.0061, DOI 10.26502/AIMR.0061]
[3]   Opioid-use disorder among patients on long-term opioid therapy: impact of final DSM-5 diagnostic criteria on prevalence and correlates [J].
Boscarino, Joseph A. ;
Hoffman, Stuart N. ;
Han, John J. .
SUBSTANCE ABUSE AND REHABILITATION, 2015, 6 :83-91
[4]   Molecular Imaging of Opioid and Dopamine Systems: Insights Into the Pharmacogenetics of Opioid Use Disorders [J].
Burns, Jamie A. ;
Kroll, Danielle S. ;
Feldman, Dana E. ;
Liu, Christopher Kure ;
Manza, Peter ;
Wiers, Corinde E. ;
Volkow, Nora D. ;
Wang, Gene-Jack .
FRONTIERS IN PSYCHIATRY, 2019, 10
[5]  
Coller JK, 2009, PHARMACOGN PERS MED, V2, P9
[6]   Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2D6, OPRM1, and COMT Genotypes and Select Opioid Therapy [J].
Crews, Kristine R. ;
Monte, Andrew A. ;
Huddart, Rachel ;
Caudle, Kelly E. ;
Kharasch, Evan D. ;
Gaedigk, Andrea ;
Dunnenberger, Henry M. ;
Leeder, J. Steven ;
Callaghan, John T. ;
Samer, Caroline Flora ;
Klein, Teri E. ;
Haidar, Cyrine E. ;
Van Driest, Sara L. ;
Ruano, Gualberto ;
Sangkuhl, Katrin ;
Cavallari, Larisa H. ;
Muller, Daniel J. ;
Prows, Cynthia A. ;
Nagy, Mohamed ;
Somogyi, Andrew A. ;
Skaar, Todd C. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 110 (04) :888-896
[7]   Clinical prediction of opioid use disorder in chronic pain patients: a cohort-retrospective study with a pharmacogenetic approach br [J].
Escorial, Monica ;
Muriel, Javier ;
Agullo, Laura ;
Zandonai, Thomas ;
Margarit, Cesar ;
Morales, Domingo ;
Peiro, Ana M. .
MINERVA ANESTESIOLOGICA, 2024, 90 (05) :386-396
[8]  
Ettienne Earl B, 2017, Addict Behav Rep, V6, P8, DOI 10.1016/j.abrep.2017.05.001
[9]  
Frieden T.R., 2016, CDC Guideline for Prescribing Opioids for Chronic Pain-United States, 2016, MMWR
[10]  
Herdman M, 2001, Aten Primaria, V28, P425