Modeling riboflavin transporter deficiency type 2: from iPSC-derived motoneurons to iPSC-derived astrocytes

被引:0
|
作者
Magliocca, Valentina [1 ,2 ]
Lanciotti, Angela [3 ]
Ambrosini, Elena [3 ]
Travaglini, Lorena [4 ]
D'Ezio, Veronica [2 ]
D'Oria, Valentina [5 ]
Petrini, Stefania [5 ]
Catteruccia, Michela [6 ]
Massey, Keith [7 ]
Tartaglia, Marco [1 ]
Bertini, Enrico [6 ]
Persichini, Tiziana [2 ]
Compagnucci, Claudia [1 ]
机构
[1] Osped Pediat Bambino Gesu, IRCCS, Mol Genet & Funct Genom, Rome, Italy
[2] Univ Roma Tre, Dept Sci, Rome, Italy
[3] Ist Super San, Dept Neurosci, Rome, Italy
[4] IRCCS, Bambino Gesu Childrens Hosp, Lab Med Genet, Unit Translat Cytogenet Res, Rome, Italy
[5] IRCCS, Bambino Gesu Childrens Hosp, Res Labs, Confocal Microscopy Core Facil, I-00165 Rome, Italy
[6] Osped Pediatr Bambino Gesu, IRCCS, Unit Neuromuscular & Neurodegenerat Disorders, Translat Pediat & Clin Genet, Rome, Italy
[7] Cure RTD Fdn, Calgary, AB, Canada
关键词
neurodegenerative autosomal recessive disease; riboflavin transporter deficiency; redox state; induced pluripotent stem cells; astrocytes; motoneurons; in vitro disease modeling; VIALETTO-VAN LAERE; OXIDATIVE STRESS; METABOLISM; EXPRESSION; EFFICIENT; NEURONS; HEALTH;
D O I
10.3389/fncel.2024.1440555
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Introduction: Riboflavin transporter deficiency type 2 (RTD2) is a rare neurodegenerative autosomal recessive disease caused by mutations in the SLC52A2 gene encoding the riboflavin transporters, RFVT2. Riboflavin (Rf) is the precursor of FAD (flavin adenine dinucleotide) and FMN (flavin mononucleotide), which are involved in different redox reactions, including the energetic metabolism processes occurring in mitochondria. To date, human induced pluripotent stem cells (iPSCs) have given the opportunity to characterize RTD2 motoneurons, which reflect the most affected cell type. Previous works have demonstrated mitochondrial and peroxisomal altered energy metabolism as well as cytoskeletal derangement in RTD2 iPSCs and iPSC-derived motoneurons. So far, no attention has been dedicated to astrocytes. Results and discussion: Here, we demonstrate that in vitro differentiation of astrocytes, which guarantee trophic and metabolic support to neurons, from RTD2 iPSCs is not compromised. These cells do not exhibit evident morphological differences nor significant changes in the survival rate when compared to astrocytes derived from iPSCs of healthy individuals. These findings indicate that differently from what had previously been documented for neurons, RTD2 does not compromise the morpho-functional features of astrocytes.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] A human iPSC-Derived myelination model for investigating fetal brain injuries
    Hiraiwa, Tsuyoshi
    Yoshii, Shoko
    Kawada, Jiro
    Sugawara, Tohru
    Kawasaki, Tomoyuki
    Shibata, Shinsuke
    Shindo, Tomoko
    Fujimori, Keiya
    Umezawa, Akihiro
    Akutsu, Hidenori
    REGENERATIVE THERAPY, 2025, 29 : 100 - 107
  • [42] iPSC-derived PSEN2 (N141I) astrocytes and microglia exhibit a primed inflammatory phenotype
    Sullivan, Michael A.
    Lane, Samuel D.
    McKenzie, Andre D. J.
    Ball, Sarah R.
    Sunde, Margaret
    Neely, G. Gregory
    Moreno, Cesar L.
    Maximova, Alexandra
    Werry, Eryn L.
    Kassiou, Michael
    JOURNAL OF NEUROINFLAMMATION, 2024, 21 (01)
  • [43] An Accessible Organotypic Microvessel Model Using iPSC-Derived Endothelium
    Ingram, Patrick N.
    Hind, Laurel E.
    Jiminez-Torres, Jose A.
    Huttenlocher, Anna
    Beebe, David J.
    ADVANCED HEALTHCARE MATERIALS, 2018, 7 (02)
  • [44] CRISPRi screens in human iPSC-derived astrocytes elucidate regulators of distinct inflammatory reactive states
    Leng, Kun
    Rose, Indigo V. L.
    Kim, Hyosung
    Xia, Wenlong
    Romero-Fernandez, Wilber
    Rooney, Brendan
    Koontz, Mark
    Li, Emmy
    Ao, Yan
    Wang, Shinong
    Krawczyk, Mitchell
    Tcw, Julia
    Goate, Alison
    Zhang, Ye
    Ullian, Erik M.
    Sofroniew, Michael, V
    Fancy, Stephen P. J.
    Schrag, Matthew S.
    Lippmann, Ethan S.
    Kampmann, Martin
    NATURE NEUROSCIENCE, 2022, 25 (11) : 1528 - +
  • [45] Long-term effects of amyloid-beta deposits in human iPSC-derived astrocytes
    Konstantinidis, Evangelos
    Dakhel, Abdulkhalek
    Beretta, Chiara
    Erlandsson, Anna
    MOLECULAR AND CELLULAR NEUROSCIENCE, 2023, 125
  • [46] Clusterin Is Required for β-Amyloid Toxicity in Human iPSC-Derived Neurons
    Robbins, Jacqueline P.
    Perfect, Leo
    Ribe, Elena M.
    Maresca, Marcello
    Dangla-Valls, Adria
    Foster, Evangeline M.
    Killick, Richard
    Nowosiad, Paulina
    Reid, Matthew J.
    Polit, Lucia Dutan
    Nevado, Alejo J.
    Ebner, Daniel
    Bohlooly-Y, Mohammad
    Buckley, Noel
    Pangalos, Menelas N.
    Price, Jack
    Lovestone, Simon
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [47] Modeling and Rescue of RP2 Retinitis Pigmentosa Using iPSC-Derived Retinal Organoids
    Lane, Amelia
    Jovanovic, Katarina
    Shortall, Ciara
    Ottaviani, Daniele
    Panes, Anna Brugulat
    Schwarz, Nele
    Guarascio, Rosellina
    Hayes, Matthew J.
    Palfi, Arpad
    Chadderton, Naomi
    Farrar, G. Jane
    Hardcastle, Alison J.
    Cheetham, Michael E.
    STEM CELL REPORTS, 2020, 15 (01): : 67 - 79
  • [48] Integration of iPSC-Derived Microglia into Brain Organoids for Neurological Research
    Mrza, Muhammad Asif
    He, Jitian
    Wang, Youwei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (06)
  • [49] The Ups and Downs of Bipolar Disorder: Patterning in iPSC-derived neurons
    Williams, Aislinn J.
    Bame, Monica
    DeLong, Cynthia J.
    Mabrouk, Omar
    Kennedy, Robert
    McInnis, Melvin G.
    O'Shea, K. Sue
    BIOLOGICAL PSYCHIATRY, 2015, 77 (09) : 290S - 290S
  • [50] Quantitative proteomic analysis of Rett iPSC-derived neuronal progenitors
    Varderidou-Minasian, Suzy
    Hinz, Lisa
    Hagemans, Dominique
    Posthuma, Danielle
    Altelaar, Maarten
    Heine, Vivi M.
    MOLECULAR AUTISM, 2020, 11 (01)