Modeling riboflavin transporter deficiency type 2: from iPSC-derived motoneurons to iPSC-derived astrocytes

被引:0
|
作者
Magliocca, Valentina [1 ,2 ]
Lanciotti, Angela [3 ]
Ambrosini, Elena [3 ]
Travaglini, Lorena [4 ]
D'Ezio, Veronica [2 ]
D'Oria, Valentina [5 ]
Petrini, Stefania [5 ]
Catteruccia, Michela [6 ]
Massey, Keith [7 ]
Tartaglia, Marco [1 ]
Bertini, Enrico [6 ]
Persichini, Tiziana [2 ]
Compagnucci, Claudia [1 ]
机构
[1] Osped Pediat Bambino Gesu, IRCCS, Mol Genet & Funct Genom, Rome, Italy
[2] Univ Roma Tre, Dept Sci, Rome, Italy
[3] Ist Super San, Dept Neurosci, Rome, Italy
[4] IRCCS, Bambino Gesu Childrens Hosp, Lab Med Genet, Unit Translat Cytogenet Res, Rome, Italy
[5] IRCCS, Bambino Gesu Childrens Hosp, Res Labs, Confocal Microscopy Core Facil, I-00165 Rome, Italy
[6] Osped Pediatr Bambino Gesu, IRCCS, Unit Neuromuscular & Neurodegenerat Disorders, Translat Pediat & Clin Genet, Rome, Italy
[7] Cure RTD Fdn, Calgary, AB, Canada
关键词
neurodegenerative autosomal recessive disease; riboflavin transporter deficiency; redox state; induced pluripotent stem cells; astrocytes; motoneurons; in vitro disease modeling; VIALETTO-VAN LAERE; OXIDATIVE STRESS; METABOLISM; EXPRESSION; EFFICIENT; NEURONS; HEALTH;
D O I
10.3389/fncel.2024.1440555
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Introduction: Riboflavin transporter deficiency type 2 (RTD2) is a rare neurodegenerative autosomal recessive disease caused by mutations in the SLC52A2 gene encoding the riboflavin transporters, RFVT2. Riboflavin (Rf) is the precursor of FAD (flavin adenine dinucleotide) and FMN (flavin mononucleotide), which are involved in different redox reactions, including the energetic metabolism processes occurring in mitochondria. To date, human induced pluripotent stem cells (iPSCs) have given the opportunity to characterize RTD2 motoneurons, which reflect the most affected cell type. Previous works have demonstrated mitochondrial and peroxisomal altered energy metabolism as well as cytoskeletal derangement in RTD2 iPSCs and iPSC-derived motoneurons. So far, no attention has been dedicated to astrocytes. Results and discussion: Here, we demonstrate that in vitro differentiation of astrocytes, which guarantee trophic and metabolic support to neurons, from RTD2 iPSCs is not compromised. These cells do not exhibit evident morphological differences nor significant changes in the survival rate when compared to astrocytes derived from iPSCs of healthy individuals. These findings indicate that differently from what had previously been documented for neurons, RTD2 does not compromise the morpho-functional features of astrocytes.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Generation and purification of iPSC-derived cardiomyocytes for clinical applications
    M. Generali
    D. Kehl
    D. Meier
    D. Zorndt
    K. Atrott
    H. Saito
    MY. Emmert
    SP. Hoerstrup
    Stem Cell Research & Therapy, 16 (1)
  • [32] Characterization of cardiac metabolism in iPSC-derived cardiomyocytes: lessons from maturation and disease modeling
    Sofija Vučković
    Rafeeh Dinani
    Edgar E. Nollet
    Diederik W. D. Kuster
    Jan Willem Buikema
    Riekelt H. Houtkooper
    Miranda Nabben
    Jolanda van der Velden
    Birgit Goversen
    Stem Cell Research & Therapy, 13
  • [33] Functional Analysis and Transcriptomic Profiling of iPSC-Derived Macrophages and Their Application in Modeling Mendelian Disease
    Zhang, Hanrui
    Xue, Chenyi
    Shah, Rhia
    Bermingham, Kate
    Hinkle, Christine C.
    Li, Wenjun
    Rodrigues, Amrith
    Tabita-Martinez, Jennifer
    Millar, John S.
    Cuchel, Marina
    Pashos, Evanthia E.
    Liu, Ying
    Yan, Ruilan
    Yang, Wenli
    Gosai, Sager J.
    VanDorn, Daniel
    Chou, Stella T.
    Gregory, Brian D.
    Morrisey, Edward E.
    Li, Mingyao
    Rader, Daniel J.
    Reilly, Muredach P.
    CIRCULATION RESEARCH, 2015, 117 (01) : 17 - 28
  • [34] Multiomics Evaluation of Human iPSCs and iPSC-Derived Neurons
    Lee, Gwang Bin
    Mazli, Wan Nur Atiqah binti
    Hao, Ling
    JOURNAL OF PROTEOME RESEARCH, 2024, 23 (08) : 3149 - 3160
  • [35] APOE deficiency impacts neural differentiation and cholesterol biosynthesis in human iPSC-derived cerebral organoids
    Zhao, Jing
    Ikezu, Tadafumi C.
    Lu, Wenyan
    Macyczko, Jesse R.
    Li, Yonghe
    Lewis-Tuffin, Laura J.
    Martens, Yuka A.
    Ren, Yingxue
    Zhu, Yiyang
    Asmann, Yan W.
    Ertekin-Taner, Nilufer
    Kanekiyo, Takahisa
    Bu, Guojun
    STEM CELL RESEARCH & THERAPY, 2023, 14 (01)
  • [36] Generation of a Transplantable Population of Human iPSC-Derived Retinal Ganglion Cells
    Rabesandratana, Oriane
    Chaffiol, Antoine
    Mialot, Antoine
    Slembrouck-Brec, Amelie
    Joffrois, Corentin
    Nanteau, Celine
    Rodrigues, Amelie
    Gagliardi, Giuliana
    Reichman, Sacha
    Sahel, Jose-Alain
    Chedotal, Alain
    Duebel, Jens
    Goureau, Olivier
    Orieux, Gael
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [37] Recapitulation of NOD/RIPK2 signaling in iPSC-derived macrophages
    Harati, Mozhgan Dehghan
    King, Jim
    Langer, Simon
    Binder, Florian
    Heilker, Ralf
    SLAS DISCOVERY, 2024, 29 (07)
  • [38] iPSC-derived healthy human astrocytes selectively load miRNAs targeting neuronal genes into extracellular vesicles
    Gordillo-Sampedro, Sara
    Antounians, Lina
    Wei, Wei
    Mufteev, Marat
    Lendemeijer, Bas
    Kushner, Steven A.
    de Vrij, Femke M. S.
    Zani, Augusto
    Ellis, James
    MOLECULAR AND CELLULAR NEUROSCIENCE, 2024, 129
  • [39] iPSC-derived reactive astrocytes from patients with multiple sclerosis protect cocultured neurons in inflammatory conditions
    Kerkering, Janis
    Muinjonov, Bakhrom
    Rosiewicz, Kamil S.
    Diecke, Sebastian
    Biese, Charlotte
    Schiweck, Juliane
    Chien, Claudia
    Zocholl, Dario
    Conrad, Thomas
    Paul, Friedemann
    Alisch, Marlen
    Siffrin, Volker
    JOURNAL OF CLINICAL INVESTIGATION, 2023, 133 (13)
  • [40] Microglia Influence Neurofilament Deposition in ALS iPSC-Derived Motor Neurons
    Allison, Reilly L.
    Adelman, Jacob W.
    Abrudan, Jenica
    Urrutia, Raul A.
    Zimmermann, Michael T.
    Mathison, Angela J.
    Ebert, Allison D.
    GENES, 2022, 13 (02)