Modeling riboflavin transporter deficiency type 2: from iPSC-derived motoneurons to iPSC-derived astrocytes

被引:0
|
作者
Magliocca, Valentina [1 ,2 ]
Lanciotti, Angela [3 ]
Ambrosini, Elena [3 ]
Travaglini, Lorena [4 ]
D'Ezio, Veronica [2 ]
D'Oria, Valentina [5 ]
Petrini, Stefania [5 ]
Catteruccia, Michela [6 ]
Massey, Keith [7 ]
Tartaglia, Marco [1 ]
Bertini, Enrico [6 ]
Persichini, Tiziana [2 ]
Compagnucci, Claudia [1 ]
机构
[1] Osped Pediat Bambino Gesu, IRCCS, Mol Genet & Funct Genom, Rome, Italy
[2] Univ Roma Tre, Dept Sci, Rome, Italy
[3] Ist Super San, Dept Neurosci, Rome, Italy
[4] IRCCS, Bambino Gesu Childrens Hosp, Lab Med Genet, Unit Translat Cytogenet Res, Rome, Italy
[5] IRCCS, Bambino Gesu Childrens Hosp, Res Labs, Confocal Microscopy Core Facil, I-00165 Rome, Italy
[6] Osped Pediatr Bambino Gesu, IRCCS, Unit Neuromuscular & Neurodegenerat Disorders, Translat Pediat & Clin Genet, Rome, Italy
[7] Cure RTD Fdn, Calgary, AB, Canada
关键词
neurodegenerative autosomal recessive disease; riboflavin transporter deficiency; redox state; induced pluripotent stem cells; astrocytes; motoneurons; in vitro disease modeling; VIALETTO-VAN LAERE; OXIDATIVE STRESS; METABOLISM; EXPRESSION; EFFICIENT; NEURONS; HEALTH;
D O I
10.3389/fncel.2024.1440555
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Introduction: Riboflavin transporter deficiency type 2 (RTD2) is a rare neurodegenerative autosomal recessive disease caused by mutations in the SLC52A2 gene encoding the riboflavin transporters, RFVT2. Riboflavin (Rf) is the precursor of FAD (flavin adenine dinucleotide) and FMN (flavin mononucleotide), which are involved in different redox reactions, including the energetic metabolism processes occurring in mitochondria. To date, human induced pluripotent stem cells (iPSCs) have given the opportunity to characterize RTD2 motoneurons, which reflect the most affected cell type. Previous works have demonstrated mitochondrial and peroxisomal altered energy metabolism as well as cytoskeletal derangement in RTD2 iPSCs and iPSC-derived motoneurons. So far, no attention has been dedicated to astrocytes. Results and discussion: Here, we demonstrate that in vitro differentiation of astrocytes, which guarantee trophic and metabolic support to neurons, from RTD2 iPSCs is not compromised. These cells do not exhibit evident morphological differences nor significant changes in the survival rate when compared to astrocytes derived from iPSCs of healthy individuals. These findings indicate that differently from what had previously been documented for neurons, RTD2 does not compromise the morpho-functional features of astrocytes.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Morphological Characterization of Astrocytes in a Xenograft of Human iPSC-Derived Neural Precursor Cells
    Voronkov, D. N.
    Stavrovskaya, A. V.
    Guschina, A. S.
    Olshansky, A. S.
    Lebedeva, O. S.
    Lagarkova, M. A.
    Eremeev, A. V.
    ACTA NATURAE, 2022, 14 (03): : 100 - 108
  • [22] Patient-Specific iPSC-Derived RPE for Modeling of Retinal Diseases
    Nguyen, Huy V.
    Li, Yao
    Tsang, Stephen H.
    JOURNAL OF CLINICAL MEDICINE, 2015, 4 (04): : 567 - 578
  • [23] Aquaporin 9 induction in human iPSC-derived hepatocytes facilitates modeling of ornithine transcarbamylase deficiency
    Laemmle, Alexander
    Poms, Martin
    Hsu, Bernadette
    Borsuk, Mariia
    Rufenacht, Veronique
    Robinson, Joshua
    Sadowski, Martin C.
    Nuoffer, Jean-Marc
    Haberle, Johannes
    Willenbring, Holger
    HEPATOLOGY, 2022, 76 (03) : 646 - 659
  • [24] Serotonin effects on human iPSC-derived neural cell functions: from mitochondria to depression
    Cardon, Iseline
    Grobecker, Sonja
    Jenne, Frederike
    Jahner, Tatjana
    Rupprecht, Rainer
    Milenkovic, Vladimir M.
    Wetzel, Christian H.
    MOLECULAR PSYCHIATRY, 2024, 29 (09) : 2689 - 2700
  • [25] Excess α-synuclein compromises phagocytosis in iPSC-derived macrophages
    Haenseler, Walther
    Zambon, Federico
    Lee, Heyne
    Vowles, Jane
    Rinaldi, Federica
    Duggal, Galbha
    Houlden, Henry
    Gwinn, Katrina
    Wray, Selina
    Luk, Kelvin C.
    Wade-Martins, Richard
    James, William S.
    Cowley, Sally A.
    SCIENTIFIC REPORTS, 2017, 7
  • [26] Altered metabolic function induced by Aβ-oligomers and PSEN1 mutations in iPSC-derived astrocytes
    Elsworthy, Richard J.
    Finelli, Mattea J.
    Aqattan, Sarah
    Dunleavy, Connor
    King, Marianne
    Ludlam, Adele
    Tarczyluk, Marta A.
    Allen, Sophie L.
    Prosser, Sophie
    Chen, Rui
    Jarquin, Sandra Martinez
    Kim, Dong H.
    Brown, James
    Parri, H. R.
    Aldred, Sarah
    Hill, Eric J.
    JOURNAL OF NEUROCHEMISTRY, 2025, 169 (01)
  • [27] iPSC-Derived Natural Killer Cells for Cancer Immunotherapy
    Karagiannis, Peter
    Kim, Shin-Il
    MOLECULES AND CELLS, 2021, 44 (08) : 541 - 548
  • [28] Impact of hydrodynamics on iPSC-derived cardiomyocyte differentiation processes
    Samaras, Jasmin J.
    Abecasis, Bernardo
    Serra, Margarida
    Ducci, Andrea
    Micheletti, Martina
    JOURNAL OF BIOTECHNOLOGY, 2018, 287 : 18 - 27
  • [29] Molecular and functional variation in iPSC-derived sensory neurons
    Schwartzentruber, Jeremy
    Foskolou, Stefanie
    Kilpinen, Helena
    Rodrigues, Julia
    Alasoo, Kaur
    Knights, Andrew J.
    Patel, Minal
    Goncalves, Angela
    Ferreira, Rita
    Benn, Caroline Louise
    Wilbrey, Anna
    Bictash, Magda
    Impey, Emma
    Cao, Lishuang
    Lainez, Sergio
    Loucif, Alexandre Julien
    Whiting, Paul John
    Gutteridge, Alex
    Gaffney, Daniel J.
    NATURE GENETICS, 2018, 50 (01) : 54 - +
  • [30] Characterization of cardiac metabolism in iPSC-derived cardiomyocytes: lessons from maturation and disease modeling
    Vuckovic, Sofija
    Dinani, Rafeeh
    Nollet, Edgar E.
    Kuster, Diederik W. D.
    Buikema, Jan Willem
    Houtkooper, Riekelt H.
    Nabben, Miranda
    van der Velden, Jolanda
    Goversen, Birgit
    STEM CELL RESEARCH & THERAPY, 2022, 13 (01)