Adiabatic quantum trajectories in engineered reservoirs

被引:0
作者
King, Emma C. [1 ]
Giannelli, Luigi [2 ,3 ,4 ]
Menu, Raphael [1 ]
Kriel, Johannes N. [5 ]
Morigi, Giovanna [1 ]
机构
[1] Univ Saarland, Theoret Phys, D-66123 Saarbrucken, Germany
[2] Univ Catania, Dipartimento Fis & Astron Ettore Majorana, Via S Sofia 64, I-95123 Catania, Italy
[3] UoS Univ, CNR IMM, I-95123 Catania, Italy
[4] INFN Sez Catania, I-95123 Catania, Italy
[5] Stellenbosch Univ, Inst Theoret Phys, ZA-7600 Stellenbosch, South Africa
基金
美国国家科学基金会;
关键词
THEOREMS; STATE;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the efficiency of protocols for adiabatic quantum state transfer assisted by an engineered reservoir. The target dynamics is a quantum trajectory in the Hilbert space and is a fixed point of a time-dependent master equation in the limit of adiabatic dynamics. We specialize to quantum state transfer in a qubit and determine the optimal schedule for a class of time-dependent Lindblad equations. The speed limit on state transfer is extracted from a physical model of a qubit coupled to a reservoir, from which the Lindblad equation is derived in the Born-Markov limit. Our analysis shows that the resulting efficiency is comparable to the efficiency of the optimal unitary dynamics. Numerical studies indicate that reservoir-engineered protocols could outperform unitary protocols outside the regime of the Born-Markov master equation, namely, when correlations between the qubit and reserto the theory of shortcuts to adiabaticity for protocols of the NISQ era.
引用
收藏
页数:21
相关论文
共 60 条
[1]   Adiabatic quantum computation [J].
Albash, Tameem ;
Lidar, Daniel A. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[2]   Quantum adiabatic Markovian master equations [J].
Albash, Tameem ;
Boixo, Sergio ;
Lidar, Daniel A. ;
Zanardi, Paolo .
NEW JOURNAL OF PHYSICS, 2012, 14
[3]   Geometry and Response of Lindbladians [J].
Albert, Victor V. ;
Bradlyn, Barry ;
Fraas, Martin ;
Jiang, Liang .
PHYSICAL REVIEW X, 2016, 6 (04)
[4]   Shortcuts to Adiabaticity in Driven Open Quantum Systems: Balanced Gain and Loss and Non-Markovian Evolution [J].
Alipour, S. ;
Chenu, A. ;
Rezakhani, A. T. ;
del Campo, A. .
QUANTUM, 2020, 4
[5]  
[Anonymous], PHYS REV A
[6]  
[Anonymous], 1932, Phys. Z. Sowjetunion, DOI DOI 10.1016/B978-0-08-010586-4.50014-6
[7]   Adiabatic Response for Lindblad Dynamics [J].
Avron, J. E. ;
Fraas, M. ;
Graf, G. M. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (05) :800-823
[8]   Adiabatic Theorems for Generators of Contracting Evolutions [J].
Avron, J. E. ;
Fraas, M. ;
Graf, G. M. ;
Grech, P. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 314 (01) :163-191
[9]   Landau-Zener Tunneling for Dephasing Lindblad Evolutions [J].
Avron, J. E. ;
Fraas, M. ;
Graf, G. M. ;
Grech, P. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 305 (03) :633-639
[10]   Quantum response of dephasing open systems [J].
Avron, J. E. ;
Fraas, M. ;
Graf, G. M. ;
Kenneth, O. .
NEW JOURNAL OF PHYSICS, 2011, 13