Fabrication of a microfluidic system with in situ-integrated microlens arrays using electrohydrodynamic jet printing

被引:0
|
作者
Zhong, Ya [1 ,2 ,3 ]
Yu, Haibo [1 ,2 ]
Zhou, Peilin [4 ]
Guo, Hongji [1 ,2 ]
Zhao, Tianming [1 ,2 ]
Wen, Yangdong [5 ]
Zou, Wuhao [1 ,2 ,3 ]
Liu, Lianqing [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110169, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Henan Agr Univ, Coll Mech & Elect Engn, Zhengzhou 450002, Peoples R China
[5] Southwest Jiaotong Univ, Inst Urban Rail Transportat, Chengdu 610000, Peoples R China
来源
关键词
Microfluidic system; Cell counting; In situ fabrication; Microlens array; E -jet printing; LENS ARRAYS; TUMOR-CELLS;
D O I
10.1016/j.optlastec.2024.111637
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Microfluidic systems with integrated microlenses enhance cellular analysis and observation and have gained significant attention in the biomedical field. However, the integration and design of microlenses in microfluidic systems remain challenging. In this study, we utilize a high-precision electrohydrodynamic jet (E-jet) printing system for in-situ integration of microlens. By incorporating a tilting illumination observation module into the Ejet printing system, the print nozzle can be accurately positioned 10 mu m above the microchannel bottom, thereby mitigating the edge effect of the microfluidic channels. We have developed a microfluidic system embedding microlens arrays (MLAs) that enable parallel, multichannel cell counting. The microfluidic system comprises nine channels, each featuring a 50 mu m diameter microlens printed along the central axis. Using microlenses enables non-contact cell counting by detecting light-intensity changes. Simulating and optimizing the microfluidic channel size enable cells to align on the centerline of the channel and pass over the focal region of the microlens via inertial forces. As the cells flow through the microlens, the intensity of the focal spots decreases by approximately 50 %. The microfluidic cell-counting system can function independently or be integrated with other microfluidic systems as a unit, thus enhancing the single-cell operational and analytical capabilities of microfluidic systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Fabrication of piezoelectric thick-film stator using electrohydrodynamic jet printing for micro rotary ultrasonic motors
    Zhao, Kuipeng
    Wang, Dazhi
    Wang, Zhu
    Jiang, Chongyang
    Abbas, Zeshan
    Zheng, Yingbin
    Yang, Qing
    Tang, Bin
    Liu, Tianguo
    Tao, Fenggang
    Xu, Wei
    Liang, Junsheng
    CERAMICS INTERNATIONAL, 2020, 46 (16) : 26129 - 26135
  • [42] Efficient Fabrication of Bioinspired Flexible Pressure Sensors via Electrohydrodynamic Jet Printing Method
    Shi, Shiwei
    Abbas, Zeshan
    Hu, Xiaoguang
    Zheng, Xiaohu
    Zhao, Xiangyu
    Ren, Tongqun
    Wang, Dazhi
    MACROMOLECULAR RAPID COMMUNICATIONS, 2024, 45 (19)
  • [43] High scaling ratio line width reduction and fabrication method with electrohydrodynamic jet printing
    Cheng, E.
    Zhang, Tianxiao
    Cheng, Yu
    Li, Jinnan
    Zhang, Zhengyan
    MICRO & NANO LETTERS, 2021, 16 (01) : 23 - 29
  • [44] Freeform fabrication of metallic patterns by unforced electrohydrodynamic jet printing of organic silver ink
    Ke Wang
    Mark D. Paine
    John P. W. Stark
    Journal of Materials Science: Materials in Electronics, 2009, 20 : 1154 - 1157
  • [45] Freeform fabrication of metallic patterns by unforced electrohydrodynamic jet printing of organic silver ink
    Wang, Ke
    Paine, Mark D.
    Stark, John P. W.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2009, 20 (11) : 1154 - 1157
  • [46] System Identification of a Discrete Repetitive Process Model for Electrohydrodynamic Jet Printing
    Wang, Zhi
    Sammons, Patrick M.
    Pannier, Christopher P.
    Barton, Kira
    Hoelzle, David J.
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 4464 - 4471
  • [47] New production method of convex microlens arrays for integrated fluorescence microfluidic detection systems
    Yang, H.
    Shyu, R. F.
    Huang, J. -W.
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2006, 12 (10-11): : 907 - 912
  • [48] New production method of convex microlens arrays for integrated fluorescence microfluidic detection systems
    H. Yang
    R. F. Shyu
    J.-W. Huang
    Microsystem Technologies, 2006, 12 : 907 - 912
  • [49] Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique
    Kim, Joo Yeon
    Brauer, Nils B.
    Fakhfouri, Vahid
    Boiko, Dmitri L.
    Charbon, Edoardo
    Grutzner, Gabi
    Brugger, Juergen
    OPTICAL MATERIALS EXPRESS, 2011, 1 (02): : 259 - 269
  • [50] Parameter Optimization for Microlens Arrays Fabrication Using Genetic Algorithms
    Chiu, Chui-Yu
    Lin, Yi
    Chou, Yi-Hsian
    Shih, Po-Chou
    JOURNAL OF THE CHINESE SOCIETY OF MECHANICAL ENGINEERS, 2012, 33 (06): : 525 - 535