Complete families of smooth space curves and strong semistability

被引:0
作者
Benoist, Olivier [1 ]
机构
[1] ENS, Dept Math & Applicat, 45 Rue Ulm, F-75230 Paris 05, France
关键词
Hilbert scheme; Hilbert-Kunz multiplicity; space curves; strong semistability; syzygy bundles; HILBERT-KUNZ MULTIPLICITY; VECTOR-BUNDLES; VARIETY; MODULI;
D O I
10.1002/mana.201700251
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the first non-trivial examples of complete families of non-degenerate smooth space curves, and show that the base of such a family cannot be a rational curve. Both results rely on the study of the strong semistability of certain vector bundles.
引用
收藏
页码:2354 / 2366
页数:13
相关论文
共 29 条
[1]  
[Anonymous], 1995, GRAD TEXTS MATH
[2]  
[Anonymous], 2010, GEOMETRY MODULI SPAC, DOI DOI 10.1017/CBO9780511711985
[3]  
Arbarello E., 1985, Fundamental Principles of Mathematical Sciences, V267
[4]   The rationality of the Hilbert-Kunz multiplicity in graded dimension two [J].
Brenner, H .
MATHEMATISCHE ANNALEN, 2006, 334 (01) :91-110
[5]   An explicit example of Frobenius periodicity [J].
Brenner, Holger ;
Kaid, Almar .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (08) :1412-1420
[6]  
CHANG MC, 1994, COMPOS MATH, V90, P53
[7]   CLOSED FAMILIES OF SMOOTH SPACE-CURVES [J].
CHANG, MC ;
RAN, Z .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (03) :707-713
[8]  
DALE M, 1984, P LOND MATH SOC, V49, P329
[9]  
Frey G., 1991, ARITHMETIC ALGEBRAIC, V89, P153
[10]   SOME SURPRISING HILBERT-KUNZ FUNCTIONS [J].
HAN, C ;
MONSKY, P .
MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (01) :119-135