Self-Supervised Few-Shot Learning on Point Clouds

被引:0
|
作者
Sharma, Charu [1 ]
Kaul, Manohar [1 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Comp Sci & Engn, Hyderabad, India
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The increased availability of massive point clouds coupled with their utility in a wide variety of applications such as robotics, shape synthesis, and self-driving cars has attracted increased attention from both industry and academia. Recently, deep neural networks operating on labeled point clouds have shown promising results on supervised learning tasks like classification and segmentation. However, supervised learning leads to the cumbersome task of annotating the point clouds. To combat this problem, we propose two novel self-supervised pre-training tasks that encode a hierarchical partitioning of the point clouds using a cover-tree, where point cloud subsets lie within balls of varying radii at each level of the cover-tree. Furthermore, our self-supervised learning network is restricted to pre-train on the support set (comprising of scarce training examples) used to train the downstream network in a few-shot learning (FSL) setting. Finally, the fully-trained self-supervised network's point embeddings are input to the downstream task's network. We present a comprehensive empirical evaluation of our method on both downstream classification and segmentation tasks and show that supervised methods pre-trained with our self-supervised learning method significantly improve the accuracy of state-of-the-art methods. Additionally, our method also outperforms previous unsupervised methods in downstream classification tasks.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Reinforced Self-Supervised Training for Few-Shot Learning
    Yan, Zhichao
    An, Yuexuan
    Xue, Hui
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 731 - 735
  • [2] Conditional Self-Supervised Learning for Few-Shot Classification
    An, Yuexuan
    Xue, Hui
    Zhao, Xingyu
    Zhang, Lu
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2140 - 2146
  • [3] Pareto Self-Supervised Training for Few-Shot Learning
    Chen, Zhengyu
    Ge, Jixie
    Zhan, Heshen
    Huang, Siteng
    Wang, Donglin
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13658 - 13667
  • [4] SELF-SUPERVISED LEARNING FOR FEW-SHOT IMAGE CLASSIFICATION
    Chen, Da
    Chen, Yuefeng
    Li, Yuhong
    Mao, Feng
    He, Yuan
    Xue, Hui
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1745 - 1749
  • [5] Self-Supervised Learning for Few-Shot Medical Image Segmentation
    Ouyang, Cheng
    Biffi, Carlo
    Chen, Chen
    Kart, Turkay
    Qiu, Huaqi
    Rueckert, Daniel
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (07) : 1837 - 1848
  • [6] Few-Shot Hyperspectral Image Classification With Self-Supervised Learning
    Li, Zhaokui
    Guo, Hui
    Chen, Yushi
    Liu, Cuiwei
    Du, Qian
    Fang, Zhuoqun
    Wang, Yan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [7] SELF-SUPERVISED LEARNING FOR FEW-SHOT BIRD SOUND CLASSIFICATION
    Moummad, Ilyass
    Farrugia, Nicolas
    Serizel, Romain
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW 2024, 2024, : 600 - 604
  • [8] Self-Supervised Tuning for Few-Shot Segmentation
    Zhu, Kai
    Zhai, Wei
    Cao, Yang
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 1019 - 1025
  • [9] SELF-SUPERVISED FEW-SHOT LEARNING FOR ISCHEMIC STROKE LESION SEGMENTATION
    Tomasetti, Luca
    Hansen, Stine
    Khanmohammadi, Mahdieh
    Engan, Kjersti
    Hollesli, Liv Jorunn
    Kurz, Kathinka Daehli
    Kampffmeyer, Michael
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [10] Few-Shot Class Incremental Learning Leveraging Self-Supervised Features
    Ahmad, Touqeer
    Dhamija, Akshay Raj
    Cruz, Steve
    Rabinowitz, Ryan
    Li, Chunchun
    Jafarzadeh, Mohsen
    Boult, Terrance E.
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3899 - 3909