On the Resilience Analysis of DC Microgrids With Power Buffer Control

被引:0
作者
Zhou, Siyu [1 ]
Qian, Yangyang [2 ]
Wan, Yan [1 ]
Lin, Zongli [2 ]
Shamash, Yacov A. [3 ]
Premakumar, Abhiram V. P. [1 ]
Davoudi, Ali [1 ]
机构
[1] Univ Texas Arlington, Dept Elect Engn, Arlington, TX 76019 USA
[2] Univ Virginia, Charles L Brown Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
[3] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
关键词
DC microgrids; voltage collapse; power buffers; combined disturbance; resilience metric; METRICS;
D O I
10.1109/TCSI.2024.3415966
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, we investigate the resilience of DC microgrids in the face of disturbances that could induce boost converter failures. We associate the converter failure conditions with disturbances and implement a power buffer control system, which prevents voltage collapse and promotes system stability. A new resilience model is proposed that considers general power mismatches for a comprehensive resilience evaluation. We further evaluate the resilience of an interconnected DC microgrid where the stability of the system is ensured through proofs and examine the role of power buffer control in enhancing resilience against disturbances. The results validate the significance of power buffer control in augmenting DC microgrid resilience. The hardware-in-the-loop experiment study demonstrates over $32\%$ improvement of resilience using the proposed control.
引用
收藏
页码:4233 / 4246
页数:14
相关论文
共 30 条
  • [1] Metrics and quantitative framework for assessing microgrid resilience against windstorms
    Amirioun, M. H.
    Aminifar, F.
    Lesani, H.
    Shahidehpour, M.
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 104 : 716 - 723
  • [2] Open-loop power-stage transfer functions relevant to current-mode control of boost PWM converter operating in CCM
    Bryant, B
    Kazimierczuk, MK
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (10) : 2158 - 2164
  • [3] Cunha F., 2002, IFAC P, P211
  • [4] Why Ideal Constant Power Loads Are Not the Worst Case Condition From a Control Standpoint
    Cupelli, Marco
    Zhu, Lin
    Monti, Antonello
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2015, 6 (06) : 2596 - 2606
  • [5] DC Microgrids-Part II: A Review of Power Architectures, Applications, and Standardization Issues
    Dragicevic, Tomislav
    Lu, Xiaonan
    Vasquez, Juan C.
    Guerrero, Josep M.
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2016, 31 (05) : 3528 - 3549
  • [6] Erickson RW, 2007, FUNDAMENTALS POWER E
  • [7] Game-Theoretic Control of Active Loads in DC Microgrids
    Fan, Ling-Ling
    Nasirian, Vahidreza
    Modares, Hamidreza
    Lewis, Frank L.
    Song, Yong-Duan
    Davoudi, Ali
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2016, 31 (03) : 882 - 895
  • [8] Step-Up DC-DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications
    Forouzesh, Mojtaba
    Siwakoti, Yam P.
    Gorji, Saman A.
    Blaabjerg, Frede
    Lehman, Brad
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2017, 32 (12) : 9143 - 9178
  • [9] Microgrid Scheduling With Uncertainty: The Quest for Resilience
    Gholami, Amin
    Shekari, Tohid
    Aminifar, Farrokh
    Shahidehpour, Mohammad
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2016, 7 (06) : 2849 - 2858
  • [10] Resilience and Cost Trade Space for Microgrids on Islands
    Giachetti, Ronald E.
    Van Bossuyt, Douglas L.
    Anderson, William, Jr.
    Oriti, Giovanna
    [J]. IEEE SYSTEMS JOURNAL, 2022, 16 (03): : 3939 - 3949