Mathematical modeling and simulation for malaria disease transmission using the CF fractional derivative

被引:8
作者
Alqahtani, A. S. [1 ]
Ramzan, Sehrish [2 ]
Zanib, Syeda Alishwa [3 ]
Nazir, Aqsa [4 ]
Masood, Khalid [5 ]
Malik, M. Y. [1 ]
机构
[1] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
[2] Govt Coll Univ Faisalabad, Dept Math, Faisalabad 38000, Pakistan
[3] Riphah Int Univ, Dept Math, Main Satyana Rd, Faisalabad 44000, Pakistan
[4] Natl Univ Modern Languages, Dept Comp Sci, Islamabad 44000, Pakistan
[5] Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, POB 90950, Riyadh 11623, Saudi Arabia
关键词
Mathematical model; Fractional calculus; Malaria; Stability; Reproduction number; COMPUTATION; DEFINITION; DYNAMICS;
D O I
10.1016/j.aej.2024.05.055
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A major global health problem continues to be malaria, a disease that can be fatal brought on by Plasmodium parasites and spread by the bite of infected Anopheles mosquitoes. We provide a deterministic mathematical model in this study to simulate the dynamics of malaria transmission between humans and mosquitoes. We present a new compartment for hospitalized patients as well as fractional calculus. The next -generation matrix technique is used to obtain the fundamental reproduction number, R 0 , and stability conditions for the model's equilibrium points are derived. Both locally and globally, the sensitivity analysis for the fundamental reproduction number R 0 is satisfied. In MAPLE, the Runge-Kutta fourth -order approach is used to simulate the model.
引用
收藏
页码:193 / 204
页数:12
相关论文
共 48 条
  • [1] Abdo M.S., 2023, Abhath J. Basic Appl. Sci., V1, P6
  • [2] Addai Emmanuel, 2022, Healthc Anal (N Y), V2, P100114, DOI 10.1016/j.health.2022.100114
  • [3] A Mathematical Model for Effective Control and Possible Eradication of Malaria
    Adom-Konadu, Agnes
    Yankson, Ernest
    Naandam, Samuel M.
    Dwomoh, Duah
    [J]. JOURNAL OF MATHEMATICS, 2022, 2022
  • [4] Alhaj M S M., 2023, Journal of Mathematical Analysis and Modeling, V4, P1, DOI [10.48185/jmam.v4i1.688, DOI 10.48185/JMAM.V4I1.688]
  • [5] Stability Analysis and Dynamics Preserving Nonstandard Finite Difference Schemes for a Malaria Model
    Anguelov, Roumen
    Dumont, Yves
    Lubuma, Jean
    Mureithi, Eunice
    [J]. MATHEMATICAL POPULATION STUDIES, 2013, 20 (02) : 101 - 122
  • [6] Non-fractional and fractional mathematical analysis and simulations for Q fever
    Asamoah, Joshua Kiddy K.
    Okyere, Eric
    Yankson, Ernest
    Opoku, Alex Akwasi
    Adom-Konadu, Agnes
    Acheampong, Edward
    Arthur, Yarhands Dissou
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 156
  • [7] NEW NUMERICAL APPROACH FOR FRACTIONAL DIFFERENTIAL EQUATIONS
    Atangana, Abdon
    Owolabi, Kolade M.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2018, 13 (01)
  • [8] On the existence, uniqueness, and new analytic approximate solution of the modified error function in two-phase Stefan problems
    Bougoffa, Lazhar
    Rach, Randolph C.
    Mennouni, Abdelaziz
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (14) : 10948 - 10956
  • [9] Castillo-Chavez C, 2002, IMA VOL MATH APPL, V125, P229
  • [10] Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model
    Chitnis, Nakul
    Hyman, James M.
    Cushing, Jim M.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (05) : 1272 - 1296