Simultaneous production of D-allulose and D-tagatose from lactose

被引:2
作者
Moss, Melinda M. [1 ]
Taylor, Brad J. [1 ]
Grif, Joel S. [2 ]
Kenealey, Jason D. [1 ]
机构
[1] Brigham Young Univ, Nutr Dietet & Food Sci, Provo, UT 84602 USA
[2] Brigham Young Univ, Microbiol & Mol Biol, Provo, UT 84602 USA
关键词
L-ARABINOSE ISOMERASE; PURIFICATION; BIOETHANOL; OBESITY;
D O I
10.1016/j.idairyj.2024.106022
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
The high-demand rare sugars D-tagatose and D-allulose may be produced from lactose in a combined process, though this dual conversion has not yet been demonstrated. Four enzymes from thermophilic organisms were cloned and expressed in Escherichia coli to synthesize D-tagatose and D-allulose from lactose: b-galactosidase (Geobacillus stearothermophilus), L-arabinose isomerase (G. stearothermophilus US100), D-glucose isomerase (Weizmannia coagulans) and D-allulose epimerase (Arthrobacter globiformis). A single-pot reaction mixture yielded 9.9 +/- 1.5 mg mL-1 D-allulose and 10.7 +/- 1.1 mg mL-1 D-tagatose after 24 h at 70 degrees C. Enzyme addition order did not have an impact on yields (p = 0.3527). Higher lactose concentrations resulted in higher D-tagatose concentrations (p <= 0.001) regardless of when the lactose was added, however, specific yields for D-allulose were higher without adding additional lactose during the reaction (p <= 0.001). These experiments demonstrate that a single pot synthesis of D-tagatose and Dallulose is feasible and with more optimization could be used in industrial applications. (c) 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:10
相关论文
共 45 条
  • [1] Arumugam Balakrishnan, 2020, Cardiovascular & Hematological Agents in Medicinal Chemistry, V18, P94, DOI 10.2174/1871525718666200207105436
  • [2] Beadle J. R., 1991, Google Patents
  • [3] Molecular and industrial aspects of glucose isomerase
    Bhosale, SH
    Rao, MB
    Deshpande, VV
    [J]. MICROBIOLOGICAL REVIEWS, 1996, 60 (02) : 280 - +
  • [4] A Double-Blind, Randomized Controlled, Acute Feeding Equivalence Trial of Small, Catalytic Doses of Fructose and Allulose on Postprandial Blood Glucose Metabolism in Healthy Participants: The Fructose and Allulose Catalytic Effects (FACE) Trial
    Braunstein, Catherine R.
    Noronha, Jarvis C.
    Glenn, Andrea J.
    Viguiliouk, Effie
    Noseworthy, Rebecca
    Khan, Tauseef A.
    Au-Yeung, Fei
    Mejia, Sonia Blanco
    Wolever, Thomas M. S.
    Josse, Robert G.
    Kendall, Cyril W. C.
    Sievenpiper, John L.
    [J]. NUTRIENTS, 2018, 10 (06)
  • [5] Bylund G., 2023, Dairy processing handbook
  • [6] A Three-Step Process for the Bioconversion of Whey Permeate into a Glucose-Free D-Tagatose Syrup
    Cervantes, Fadia, V
    Neifar, Sawssan
    Merdzo, Zoran
    Vina-Gonzalez, Javier
    Fernandez-Arrojo, Lucia
    Ballesteros, Antonio O.
    Fernandez-Lobato, Maria
    Bejar, Samir
    Plou, Francisco J.
    [J]. CATALYSTS, 2020, 10 (06)
  • [7] Charles D., 2012, Why Greek Yogurt Makers Want Whey to Go Away: NPR
  • [8] Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus
    Chen, W.
    Chen, H.
    Xia, Y.
    Zhao, J.
    Tian, F.
    Zhang, H.
    [J]. JOURNAL OF DAIRY SCIENCE, 2008, 91 (05) : 1751 - 1758
  • [9] Cheng SY, 2020, SCI REP-UK, V10, DOI [10.1038/s41598-020-59704-x, 10.1038/s41598-020-74710-9]
  • [10] Choudhury N. R., 2023, Tagatose market outlook from 2023 to 2033