Large language models in science

被引:0
|
作者
Kowalewski, Karl-Friedrich [1 ]
Rodler, Severin [2 ]
机构
[1] Heidelberg Univ, Univ Med Mannheim, Klin Urol & Urochirurg, Theodor Kutzer Ufer 1-3, D-68167 Heidelberg, Germany
[2] Univ Klinikum Schleswig Holstein, Klin Urol, Campus Kiel,Arnold Heller Str 3, D-24105 Kiel, Germany
来源
UROLOGIE | 2024年 / 63卷 / 09期
关键词
ChatGPT; Gemini; K & uuml; nstliche Intelligenz; Urologie; Patientendaten; Machine Learning; Artificial intelligence; Urology; Patient data; Machine learning;
D O I
10.1007/s00120-024-02396-2
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Objective: Large language models (LLMs) are gaining popularity due to their ability to communicate in a human-like manner. Their potential for science, including urology, is increasingly recognized. However, unresolved concerns regarding transparency, accountability, and the accuracy of LLM results still exist. Research question: This review examines the ethical, technical, and practical challenges as well as the potential applications of LLMs in urology and science. Materials and methodsA selective literature review was conducted to analyze current findings and developments in the field of LLMs. The review considered studies on technical aspects, ethical considerations, and practical applications in research and practice. Results: LLMs, such as GPT from OpenAI and Gemini from Google, show great potential for processing and analyzing text data. Applications in urology include creating patient information and supporting administrative tasks. However, for purely clinical and scientific questions, the methods do not yet seem mature. Currently, concerns about ethical issues and the accuracy of results persist. Conclusion: LLMs have the potential to support research and practice through efficient data processing and information provision. Despite their advantages, ethical concerns and technical challenges must be addressed to ensure responsible and trustworthy use. Increased implementation could reduce the workload of urologists and improve communication with patients.
引用
收藏
页码:860 / 866
页数:7
相关论文
共 50 条
  • [1] Large Language Models in der WissenschaftLarge language models in science
    Karl-Friedrich Kowalewski
    Severin Rodler
    Die Urologie, 2024, 63 (9) : 860 - 866
  • [2] Comparative Analysis of Large Language Models in Source Code Analysis
    Erdogan, Huseyin
    Turan, Nezihe Turhan
    Onan, Aytug
    INTELLIGENT AND FUZZY SYSTEMS, INFUS 2024 CONFERENCE, VOL 1, 2024, 1088 : 185 - 192
  • [3] Large language models and political science
    Linegar, Mitchell
    Kocielnik, Rafal
    Alvarez, R. Michael
    FRONTIERS IN POLITICAL SCIENCE, 2023, 5
  • [4] Large language models: a primer and gastroenterology applications
    Shahab, Omer
    El Kurdi, Bara
    Shaukat, Aasma
    Nadkarni, Girish
    Soroush, Ali
    THERAPEUTIC ADVANCES IN GASTROENTEROLOGY, 2024, 17
  • [5] Vision of the future: large language models in ophthalmology
    Tailor, Prashant D.
    D'Souza, Haley S.
    Li, Hanzhou
    Starr, Matthew R.
    CURRENT OPINION IN OPHTHALMOLOGY, 2024, 35 (05) : 391 - 402
  • [6] Beyond Traditional Teaching: Large Language Models as Simulated Teaching Assistants in Computer Science
    Liu, Mengqi
    M'hiri, Faten
    PROCEEDINGS OF THE 55TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE 2024, VOL. 1, 2024, : 743 - 749
  • [7] Artificial intelligence: Augmenting telehealth with large language models
    Snoswell, Centaine L.
    Snoswell, Aaron J.
    Kelly, Jaimon T.
    Caffery, Liam J.
    Smith, Anthony C.
    JOURNAL OF TELEMEDICINE AND TELECARE, 2025, 31 (01) : 150 - 154
  • [8] Clinical and Surgical Applications of Large Language Models: A Systematic Review
    Pressman, Sophia M.
    Borna, Sahar
    Gomez-Cabello, Cesar A.
    Haider, Syed Ali
    Haider, Clifton R.
    Forte, Antonio Jorge
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (11)
  • [9] Flying Into the Future With Large Language Models
    Kanjilal, Sanjat
    CLINICAL INFECTIOUS DISEASES, 2024, 78 (04) : 867 - 869
  • [10] Quo Vadis ChatGPT? From large language models to Large Knowledge Models
    Venkatasubramanian, Venkat
    Chakraborty, Arijit
    COMPUTERS & CHEMICAL ENGINEERING, 2025, 192