Holographic entanglement renormalisation for fermionic quantum matter

被引:0
作者
Mukherjee, Abhirup [1 ]
Patra, Siddhartha [1 ]
Lal, Siddhartha [1 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Dept Phys Sci, Mohanpur 741246, WB, India
关键词
quantum entanglement; holographic principle; effective field theories; renormalisation group; quantum matter; QUANTIZED HALL CONDUCTANCE; DIRAC FERMIONS; SPACETIME; SURFACE; FIELDS;
D O I
10.1088/1751-8121/ad56e1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate the emergence of a holographic dimension in a system of 2D non-interacting Dirac fermions placed on a torus, by studying the scaling of multipartite entanglement measures under a sequence of renormalisation group (RG) transformations applied in momentum space. Geometric measures defined in this emergent space can be related to the RG beta function of the spectral gap, hence establishing a holographic connection between the spatial geometry of the emergent spatial dimension and the entanglement properties of the boundary quantum theory. We prove, analytically, that changing the boundedness of the holographic space involves a topological transition accompanied by a critical Fermi surface in the boundary theory. We go on to show that this results in the formation of a quantum wormhole geometry that connects the UV and the IR of the emergent dimension. The additional conformal symmetry at the transition also supports a relation between the emergent metric and the stress-energy tensor. In the presence of an Aharonov-Bohm flux, the entanglement gains a geometry-independent piece which is shown to be topological, sensitive to changes in boundary conditions, and related to the Luttinger volume of the system. Upon the insertion of a strong transverse magnetic field, we show that the Luttinger volume is linked to the Chern number of the occupied single-particle Landau levels.
引用
收藏
页数:42
相关论文
共 169 条
[31]   c-theorem for anisotropic RG flows from holographic entanglement entropy [J].
Chu, Chong-Sun ;
Giataganas, Dimitrios .
PHYSICAL REVIEW D, 2020, 101 (04)
[32]   Density-matrix spectra for two-dimensional quantum systems [J].
Chung, MC ;
Peschel, I .
PHYSICAL REVIEW B, 2000, 62 (07) :4191-4193
[33]   Momentum space entanglement from the Wilsonian effective action [J].
Costa, Matheus H. Martins ;
van den Brink, Jeroen ;
Nogueira, Flavio S. ;
Krein, Gastao I. .
PHYSICAL REVIEW D, 2022, 106 (06)
[34]   Entanglement-area law for general bosonic harmonic lattice systems [J].
Cramer, M ;
Eisert, J ;
Plenio, MB ;
Dreissig, J .
PHYSICAL REVIEW A, 2006, 73 (01)
[35]   Holographic fermions in striped phases [J].
Cremonini, Sera ;
Li, Li ;
Ren, Jie .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (12)
[36]   Universal signatures of Dirac fermions in entanglement and charge fluctuations [J].
Crepel, Valentin ;
Hackenbroich, Anna ;
Regnault, Nicolas ;
Estienne, Benoit .
PHYSICAL REVIEW B, 2021, 103 (23)
[37]   Spectral probes of the holographic Fermi ground state: Dialing between the electron star and AdS Dirac hair [J].
Cubrovic, Mihailo ;
Liu, Yan ;
Schalm, Koenraad ;
Sun, Ya-Wen ;
Zaanen, Jan .
PHYSICAL REVIEW D, 2011, 84 (08)
[38]   String Theory, Quantum Phase Transitions, and the Emergent Fermi Liquid [J].
Cubrovic, Mihailo ;
Zaanen, Jan ;
Schalm, Koenraad .
SCIENCE, 2009, 325 (5939) :439-444
[39]   The break-up of heavy electrons at a quantum critical point [J].
Custers, J ;
Gegenwart, P ;
Wilhelm, H ;
Neumaier, K ;
Tokiwa, Y ;
Trovarelli, O ;
Geibel, C ;
Steglich, F ;
Pépin, C ;
Coleman, P .
NATURE, 2003, 424 (6948) :524-527
[40]   Einstein Equations from Varying Complexity [J].
Czech, Bartlomiej .
PHYSICAL REVIEW LETTERS, 2018, 120 (03)