GAUGE THEORY FOR STRING ALGEBROIDS

被引:0
作者
Garcia-Fernandez, Mario [1 ]
Rubio, Roberto [2 ]
Tipler, Carl [3 ]
机构
[1] UAM, Inst Ciencias Matemat, CSIC, UC3M,UCM, Nicolas Cabrera 13-15, Madrid 28049, Spain
[2] Univ Autonoma Barcelona, Barcelona 08193, Spain
[3] Univ Brest, UMR CNRS 6205, Lab Math Bretagne Atlantique, Brest, France
关键词
STROMINGER SYSTEM; MODULI SPACE; CONNECTIONS; BUNDLES; TORSION;
D O I
10.4310/jdg/1721075260
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a moment map picture for holomorphic string algebroids where the Hamiltonian gauge action is described by means of inner automorphisms of Courant algebroids. The zero locus of our moment map is given by the solutions of the Calabi system, a coupled system of equations which provides a unifying framework for the classical Calabi problem and the Hull-Strominger system. Our main results are concerned with the geometry of the moduli space of solutions, and assume a technical condition which is fulfilled in examples. We prove that the moduli space carries a pseudo-Kahler metric with Kahler potential given by the dilaton functional, a topological formula for the metric, and an infinitesimal Donaldson-Uhlenbeck-Yau type theorem.
引用
收藏
页码:77 / 152
页数:76
相关论文
共 41 条
[1]   Algebroids, heterotic moduli spaces and the Strominger system [J].
Anderson, Lara B. ;
Gray, James ;
Sharpe, Eric .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07)
[2]   Solutions of the Strominger System via Stable Bundles on Calabi-Yau Threefolds [J].
Andreas, Bjoern ;
Garcia-Fernandez, Mario .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 315 (01) :153-168
[3]   The leading quantum corrections to stringy Kahler potentials [J].
Anguelova, Lilia ;
Quigley, Callum ;
Sethi, Savdeep .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (10)
[4]   Heterotic backgrounds via generalised geometry: moment maps and moduli [J].
Ashmore, Anthony ;
Strickland-Constable, Charles ;
Tennyson, David ;
Waldram, Daniel .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (11)
[5]   Finite deformations from a heterotic superpotential: holomorphic Chern-Simons and an L algebra [J].
Ashmore, Anthony ;
de la Ossa, Xenia ;
Minasian, Ruben ;
Strickland-Constable, Charles ;
Svanes, Eirik Eik .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (10)
[6]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[7]   Moduli space of torsional manifolds [J].
Becker, Melanie ;
Tseng, Li-Sheng ;
Yau, Shing-Tung .
NUCLEAR PHYSICS B, 2007, 786 (1-2) :119-134
[8]   ANALYTIC-TORSION AND HOLOMORPHIC DETERMINANT BUNDLES .1. BOTT-CHERN FORMS AND ANALYTIC-TORSION [J].
BISMUT, JM ;
GILLET, H ;
SOULE, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (01) :49-78
[9]  
Bott R., 1965, ACTA MATH-DJURSHOLM, V114, P71
[10]   MODULI SPACE OF CALABI-YAU MANIFOLDS [J].
CANDELAS, P ;
DELAOSSA, XC .
NUCLEAR PHYSICS B, 1991, 355 (02) :455-481