LHAct: Rectifying Extremely Low and High Activations for Out-of-Distribution Detection

被引:1
|
作者
Yuan, Yue [1 ]
He, Rundong [1 ]
Han, Zhongyi [2 ]
Yin, Yilong [1 ]
机构
[1] Shandong Univ, Sch Software, Jinan, Shandong, Peoples R China
[2] MBZUAI, Machine Learning Dept, Abu Dhabi, U Arab Emirates
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023 | 2023年
基金
中国国家自然科学基金;
关键词
out-of-distribution detection; abnormal activation;
D O I
10.1145/3581783.3611720
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, out-of-distribution (OOD) detection has emerged as a crucial research area, especially when deploying AI products in real-world scenarios. OOD detection researchers have made significant efforts to mitigate the adverse effects of abnormal activation values (abbr. activations) that refer to the outputs of the activation function acted on feature maps. Since abnormal activations would cause difficulty in separating ID and OOD data, the previous unified solution is to rectify the extremely high abnormal activations by clipping them with a pre-defined threshold or filtering them with a low-pass filter. However, it ignores the extremely low abnormal activations, and the proposed rectification strategy is always suboptimal because the used rectification function is non-convergence or high-intensity convergence, leading to under-rectification or over-rectification. In this paper, we propose an approach called Rectifying Extremely Low and High Activations (LHAct). LHAct includes a newly-designed function to rectify the extremely low and high activations at the same time. Specifically, LHAct increases the difference of means between ID and OOD activation distributions while decreasing their variances after processing the original activations. Our theoretical analyses demonstrate that LHAct significantly enhances the separability of ID and OOD data. By conducting extensive experiments, we demonstrate that LHAct surpasses previous activation-based methods significantly and generalizes well to other architectures and OOD scores. Code is available at: https://github.com/ystyuan/LHAct.git.
引用
收藏
页码:8105 / 8113
页数:9
相关论文
共 50 条
  • [1] ReAct: Out-of-distribution Detection With Rectified Activations
    Sun, Yiyou
    Guo, Chuan
    Li, Yixuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [2] Out-of-distribution Detection Learning with Unreliable Out-of-distribution Sources
    Zheng, Haotian
    Wang, Qizhou
    Fang, Zhen
    Xia, Xiaobo
    Liu, Feng
    Liu, Tongliang
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [3] On the Learnability of Out-of-distribution Detection
    Fang, Zhen
    Li, Yixuan
    Liu, Feng
    Han, Bo
    Lu, Jie
    Journal of Machine Learning Research, 2024, 25
  • [4] Entropic Out-of-Distribution Detection
    Macedo, David
    Ren, Tsang Ing
    Zanchettin, Cleber
    Oliveira, Adriano L., I
    Ludermir, Teresa
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [5] Watermarking for Out-of-distribution Detection
    Wang, Qizhou
    Liu, Feng
    Zhang, Yonggang
    Zhang, Jing
    Gong, Chen
    Liu, Tongliang
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [6] Is Out-of-Distribution Detection Learnable?
    Fang, Zhen
    Li, Yixuan
    Lu, Jie
    Dong, Jiahua
    Han, Bo
    Liu, Feng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [7] On the Learnability of Out-of-distribution Detection
    Fang, Zhen
    Li, Yixuan
    Liu, Feng
    Han, Bo
    Lu, Jie
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [8] Low-Dimensional Gradient Helps Out-of-Distribution Detection
    Wu, Yingwen
    Li, Tao
    Cheng, Xinwen
    Yang, Jie
    Huang, Xiaolin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 11378 - 11391
  • [9] Out-of-Distribution Detection for Automotive Perception
    Nitsch, Julia
    Itkina, Masha
    Senanayake, Ransalu
    Nieto, Juan
    Schmidt, Max
    Siegwart, Roland
    Kochenderfer, Mykel J.
    Cadena, Cesar
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2938 - 2943
  • [10] Decoupling MaxLogit for Out-of-Distribution Detection
    Zhang, Zihan
    Xiang, Xiang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3388 - 3397