Finite element method for an optimal control problem governed by a time fractional wave equation

被引:1
作者
Wang, Shuo [1 ]
Zheng, Xiangcheng [1 ]
Du, Ning [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Optimal control problem; Time fractional wave equation; Finite element method; A priori error estimate; Numerical experiments; DIFFUSION; SUBDIFFUSION; APPROXIMATIONS;
D O I
10.1016/j.camwa.2024.03.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a finite element approximation of an optimal control problem governed by a time fractional wave equation. We first prove the well-posedness and regularity of the optimal control problem. Furthermore, we discuss the fully discrete scheme and analyze its stability and a priori error estimate. Numerical experiments are given to illustrate the theoretical findings.
引用
收藏
页码:45 / 66
页数:22
相关论文
共 46 条
[1]  
Adams R.A., 1975, SOBOLEV SPACES
[2]   Subdiffusion and anomalous local viscoelasticity in actin networks [J].
Amblard, F ;
Maggs, AC ;
Yurke, B ;
Pargellis, AN ;
Leibler, S .
PHYSICAL REVIEW LETTERS, 1996, 77 (21) :4470-4473
[3]   A SPACE-TIME FRACTIONAL OPTIMAL CONTROL PROBLEM: ANALYSIS AND DISCRETIZATION [J].
Antil, Harbir ;
Otarola, Enrique ;
Salgado, Abner J. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (03) :1295-1328
[4]   A THEORETICAL BASIS FOR THE APPLICATION OF FRACTIONAL CALCULUS TO VISCOELASTICITY [J].
BAGLEY, RL ;
TORVIK, PJ .
JOURNAL OF RHEOLOGY, 1983, 27 (03) :201-210
[5]   ERROR ESTIMATES FOR FINITE-ELEMENT METHODS FOR 2ND ORDER HYPERBOLIC EQUATIONS [J].
BAKER, GA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (04) :564-576
[6]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[7]  
Chen Y., 2000, Numer. Math., V9, P181
[8]  
Chen Yanping, 1999, Systems Science and Mathematical Science, V12, P159
[9]   A PRIORI ESTIMATES FOR MIXED FINITE-ELEMENT METHODS FOR THE WAVE-EQUATION [J].
COWSAR, LC ;
DUPONT, TF ;
WHEELER, MF .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 82 (1-3) :205-222
[10]   Convolution quadrature time discretization of fractional diffusion-wave equations [J].
Cuesta, E ;
Lubich, C ;
Palencia, C .
MATHEMATICS OF COMPUTATION, 2006, 75 (254) :673-696