Crucial role of Zr x Ni y addition during hydrogen absorption/desorption of Ti 37 V 40 Mn 23 alloy

被引:3
作者
Liu, Bin [1 ]
Chen, Xiaoyu [1 ]
Shang, Lifei [1 ]
Tao, Qiang [1 ]
Chen, Ruirun [2 ,3 ]
机构
[1] Qingdao Univ, Coll Mech & Elect Engn, Qingdao 266071, Peoples R China
[2] Harbin Inst Technol, Natl Key Lab Precis Hot Proc Met, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China
关键词
Alloy diversification; Phase structure; Kinetics properties; Dehydrogenation activation energy; STORAGE PROPERTIES; ENERGY SYSTEM; KINETICS; PHASE; MICROSTRUCTURE; THERMODYNAMICS; PERFORMANCES; ABSORPTION; ACTIVATION; ZR8NI21;
D O I
10.1016/j.jallcom.2024.174840
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to improve the hydriding/dehydriding kinetics of Ti-V-Mn alloys, Ti37V40Mn23+10 wt% ZrxNiy were prepared. The microstructure, kinetic properties, and hydrogen absorption/desorption mechanisms were investigated. The findings revealed that Ti37V40Mn23 exhibited single BCC phase structure, while the addition of 10 wt% ZrxNiy facilitated the formation of C14 Laves phase. The Johnson-Mehl-Avrami model was adopted and demonstrated a good fit for all alloys. Ti37V40Mn23+10 wt% Zr8Ni21 demonstrated optimal hydrogen storage kinetic properties, which exhibited a remarkable hydrogen desorption capacity of 2.15 wt% at 363 K. The promotion can be attributed to the increased presence of fresh surfaces and the enhanced C14 Laves phase proportion. Moreover, the dehydrogenation activation energy decreased from 109.91 kJ/mol to 55.20 kJ/mol after incorporating 10 wt% Zr8Ni21, indicating hydrogen atoms were easier to detach from the interior of the alloys.
引用
收藏
页数:12
相关论文
共 38 条
[1]   The role of storage systems in hydrogen economy: A review [J].
Amirthan, T. ;
Perera, M. S. A. .
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2022, 108
[2]   Structural characterization and hydrogen storage properties of the Ti31V26Nb26Zr12M5 (M 1/4 Fe, Co, or Ni) multi-phase multicomponent alloys [J].
Chanchetti, Lucas Faccioni ;
Silva, Bruno Hessel ;
Montero, Jorge ;
Zlotea, Claudia ;
Champion, Yannick ;
Botta, Walter Jose ;
Zepon, Guilherme .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (06) :2247-2255
[3]   Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure [J].
Chen, Siyuan ;
Wang, Yanhong ;
Lang, Xuemei ;
Fan, Shuanshi ;
Li, Gang .
ENERGY, 2023, 268
[4]   Effect of phase formation on hydrogen storage properties in Ti-V-Mn alloys by zirconium substitution [J].
Chen, X. Y. ;
Chen, R. R. ;
Ding, X. ;
Fang, H. Z. ;
Li, X. Z. ;
Ding, H. S. ;
Su, Y. Q. ;
Guo, J. J. ;
Fu, H. Z. .
ENERGY, 2019, 166 :587-597
[5]   Crystal structure and hydrogen storage properties of Ti-V-Mn alloys [J].
Chen, X. Y. ;
Chen, R. R. ;
Ding, X. ;
Fang, H. Z. ;
Guo, J. J. ;
Ding, H. S. ;
Su, Y. Q. ;
Fu, H. Z. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (12) :6210-6218
[6]   Hydrogen absorption characteristics of mechanically alloyed Ti-Zr-Ni and Ti-V-Ni powders [J].
Dagher, Abeer ;
Salem, Hanadi G. ;
Moustafa, Tarek M. ;
Mettawee, Eman Bellah ;
Abdel-Rahman, Ehab .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (31) :17740-17746
[7]   Research on the optimal planning method of hydrogen-storage units in wind-hydrogen energy system considering hydrogen energy source [J].
Dong, Yannan ;
Han, Zijiao ;
Li, Chong ;
Ma, Shaohua ;
Ma, Zhuo .
ENERGY REPORTS, 2023, 9 :1258-1264
[8]   Microstructure and hydrogen storage properties of Ti-V-Mn alloy with Zr, Ni, and Zr7Ni10 addition [J].
Feng, Zhenyu ;
Zhong, Hong ;
Li, Dou ;
Li, Xuguang ;
Yang, Bin ;
Li, Shuangming .
JOURNAL OF MATERIALS RESEARCH, 2022, 37 (09) :1591-1601
[9]  
Ge Lixia, 2023, Applied Catalysis B: Environmental, DOI [10.1016/j.apcatb.2023.122793, 10.1016/j.apcatb.2023.122793]
[10]   Microstructure and hydrogen storage properties of Ti10V84-xFe6Zrx (x=1-8) alloys [J].
Hang, Zhouming ;
Xiao, Xuezhang ;
Tan, Dezhi ;
He, Zhenghao ;
Li, Weipeng ;
Li, Shouquan ;
Chen, Changpin ;
Chen, Lixin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (07) :3080-3086