On Submanifolds of a Sasakian Manifold

被引:0
作者
Shivaprasanna, G. S. [1 ]
Rajendra, R. [2 ]
Reddy, P. Siva Kota [3 ]
Somashekhara, G. [4 ]
机构
[1] Dr Ambedkar Inst Technol, Dept Math, Bengaluru 560056, India
[2] Field Marshal KM Cariappa Coll, Dept Math, Madikeri 571201, India
[3] JSS Sci & Technol Univ, Sri Jayachamarajendra Coll Engn, Dept Math, Mysuru 570006, India
[4] MS Ramaiah Univ Appl Sci, Dept Math & Statiat, Bengaluru 560058, India
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2024年 / 42卷
关键词
Ricci-Yamabe soliton; Sasakian Manifold; Einstein manifold; torqued vector field;
D O I
10.5269/bspm.66247
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The concepts of Ricci flow and Yamabe flow are introduced in 1988 by Hamilton [13]. Ricci soliton and Yamabe soliton appear as the limit of the solutions of the Ricci flow and Yamabe flow respectively. Ricci flow and Yamabe flow have been deliberated by many geometers (See [10,12,14]). The Ricci-Yamabe flow is studied by Crasmareanu and Guler [9]. Some related developments can be found in [4,5,15-24]. This flow for the metrics on the Riemannian manifolds is defined as
引用
收藏
页码:14 / 14
页数:1
相关论文
共 50 条
  • [41] Invariant Submanifolds of Sasakian Manifolds Admitting Semi-symmetric Metric Connection
    Anitha, B. S.
    Bagewadi, C. S.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2013, 4 (01): : 29 - 38
  • [42] Warped-product contact CR-submanifolds of Sasakian space forms
    Munteanu, MI
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2005, 66 (1-2): : 75 - 120
  • [43] Pointwise Pseudo-Slant Submanifolds of a Kenmotsu Manifold
    Khan, Viqar Azam
    Shuaib, Mohammad
    FILOMAT, 2017, 31 (18) : 5833 - 5853
  • [44] CR-WARPED PRODUCT SUBMANIFOLDS OF SASAKIAN MANIFOLDS ADMITTING CERTAIN CONNECTIONS
    Hui, Shyamal Kumar
    Roy, Joydeb
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2019, 25 (03) : 194 - 202
  • [45] GENERALIZED phi-RECURRENT LORENTZIAN alpha-SASAKIAN MANIFOLD
    Prakasha, D. G. f
    Yildiz, A.
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2010, 59 (01): : 53 - 64
  • [46] On a Semi-Symmetric Metric Connection in an SP-Sasakian Manifold
    Singh, R. N.
    Pandey, S. K.
    Pandey, Giteshwari
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2013, 83 (01) : 39 - 47
  • [47] On a Semi-Symmetric Metric Connection in an SP-Sasakian Manifold
    R. N. Singh
    S. K. Pandey
    Giteshwari Pandey
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2013, 83 : 39 - 47
  • [48] On δ- Lorentzian Trans Sasakian Manifold With A Semi-Symmetric Metric Connection
    Siddiqi, Mohd Danish
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (05): : 113 - 135
  • [49] *-Ricci Soliton within the frame-work of Sasakian and (κ, μ)-contact manifold
    Ghosh, Amalendu
    Patra, Dhriti Sundar
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (07)
  • [50] W8-CURVATURE TENSOR ON (ε)-LORENTZIAN PARA-SASAKIAN MANIFOLD
    Singh, Abhishek
    Kumar, Lalit
    Yadav, Sunil Kumar
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2023, 22 (3-4): : 279 - 288