Room-Temperature Polariton Lasing from CdSe Core-Only Nanoplatelets

被引:19
作者
Freire-Fernandez, Francisco [1 ]
Sinai, Nathan G. [1 ]
Tan, Max Jin Hui [1 ]
Park, Sang-Min [1 ]
Koessler, Eric Rodolfo [2 ]
Krauss, Todd [2 ,3 ]
Huo, Pengfei [2 ,3 ]
Odom, Teri W. [1 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Univ Rochester, Dept Chem, Rochester, NY 14627 USA
[3] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
polariton lasing; strong coupling; CdSe nanoplatelets; nanoparticlearrays; surface lattice resonances; SURFACE-PLASMONS; RECOMBINATION; RED;
D O I
10.1021/acsnano.4c03164
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper reports how CdSe core-only nanoplatelets (NPLs) coupled with plasmonic Al nanoparticle lattices can exhibit exciton-polariton lasing. By improving a procedure to synthesize monodisperse 4-monolayer CdSe NPLs, we could resolve polariton decay dynamics and pathways. Experiment and theory confirmed that the system is in the strong coupling regime based on anticrossings in the dispersion diagrams and magnitude of the Rabi-splitting values. Notably, polariton lasing is observed only for cavity lattice periodicities that exhibit specific dispersive characteristics that enable polariton accumulation. The threshold of polariton lasing is 25-fold lower than the reported photon lasing values from CdSe NPLs in similar cavity designs. This open-cavity platform offers a simple approach to control exciton polaritons anticipated to benefit quantum information processing, optoelectronics, and chemical reactions.
引用
收藏
页码:15177 / 15184
页数:8
相关论文
共 58 条
[1]   Electronic Structure and Exciton-Phonon Interaction in Two-Dimensional Colloidal CdSe Nanosheets [J].
Achtstein, Alexander W. ;
Schliwa, Andrei ;
Prudnikau, Anatol ;
Hardzei, Marya ;
Artemyev, Mikhail V. ;
Thomsen, Christian ;
Woggon, Ulrike .
NANO LETTERS, 2012, 12 (06) :3151-3157
[2]   Collective resonances in gold nanoparticle arrays [J].
Auguie, Baptiste ;
Barnes, William L. .
PHYSICAL REVIEW LETTERS, 2008, 101 (14)
[4]   Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings [J].
Barnes, WL ;
Preist, TW ;
Kitson, SC ;
Sambles, JR .
PHYSICAL REVIEW B, 1996, 54 (09) :6227-6244
[5]   Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays [J].
Berghuis, Anton Matthijs ;
Tichauer, Ruth H. ;
de Jong, Lianne M. A. ;
Sokolovskii, Ilia ;
Bai, Ping ;
Ramezani, Mohammad ;
Murai, Shunsuke ;
Groenhof, Gerrit ;
Rivas, Jaime Gomez .
ACS PHOTONICS, 2022, 9 (07) :2263-2272
[6]   Recombination Dynamics of Band Edge Excitons in Quasi-Two-Dimensional CdSe Nanoplatelets [J].
Biadala, Louis ;
Liu, Feng ;
Tessier, Mickael D. ;
Yakovlev, Dmitri R. ;
Dubertret, Benoit ;
Bayer, Manfred .
NANO LETTERS, 2014, 14 (03) :1134-1139
[7]  
Byrnes T, 2014, NAT PHYS, V10, P803, DOI [10.1038/nphys3143, 10.1038/NPHYS3143]
[8]   Plasmonic Surface Lattice Resonances: Theory and Computation [J].
Cherqui, Charles ;
Bourgeois, Marc R. ;
Wang, Danqing ;
Schatz, George C. .
ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (09) :2548-2558
[9]   Polariton lasing vs. photon lasing in a semiconductor microcavity [J].
Deng, H ;
Weihs, G ;
Snoke, D ;
Bloch, J ;
Yamamoto, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (26) :15318-15323
[10]  
Dreismann A, 2016, NAT MATER, V15, P1074, DOI [10.1038/NMAT4722, 10.1038/nmat4722]