A 3D Bioprinted Cortical Organoid Platform for Modeling Human Brain Development

被引:9
作者
Cadena, Melissa A. [1 ,2 ,3 ]
Sing, Anson [3 ]
Taylor, Kylie [3 ]
Jin, Linqi [1 ,2 ]
Ning, Liqun [1 ,2 ,4 ]
Amoli, Mehdi Salar [2 ]
Singh, Yamini [1 ,2 ]
Lanjewar, Samantha N. [3 ]
Tomov, Martin L. [1 ,2 ,5 ]
Serpooshan, Vahid [1 ,2 ,5 ,6 ]
Sloan, Steven A. [3 ]
机构
[1] Emory Univ, Sch Med, Dept Biomed Engn, Atlanta, GA 30322 USA
[2] Georgia Inst Technol, Atlanta, GA 30322 USA
[3] Emory Univ, Sch Med, Dept Human Genet, Atlanta, GA 30322 USA
[4] Cleveland State Univ, Dept Mech Engn, Cleveland, OH 44115 USA
[5] Emory Univ, Sch Med, Dept Pediat, Atlanta, GA 30322 USA
[6] Childrens Healthcare Atlanta, Atlanta, GA 30322 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
3D bioprinting; brain organoids; extracellular matrix; induced pluripotent stem cells; vasculature; STEM-CELL DIFFERENTIATION; EXTRACELLULAR-MATRIX; CEREBRAL ORGANOIDS; MECHANICAL-PROPERTIES; NEURITE OUTGROWTH; HYALURONIC-ACID; SCAFFOLDS; STIFFNESS; BIOMATERIALS; ANGIOGENESIS;
D O I
10.1002/adhm.202401603
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The ability to promote three-dimensional (3D) self-organization of induced pluripotent stem cells into complex tissue structures called organoids presents new opportunities for the field of developmental biology. Brain organoids have been used to investigate principles of neurodevelopment and neuropsychiatric disorders and serve as a drug screening and discovery platform. However, brain organoid cultures are currently limited by a lacking ability to precisely control their extracellular environment. Here, this work employs 3D bioprinting to generate a high-throughput, tunable, and reproducible scaffold for controlling organoid development and patterning. Additionally, this approach supports the coculture of organoids and vascular cells in a custom architecture containing interconnected endothelialized channels. Printing fidelity and mechanical assessments confirm that fabricated scaffolds closely match intended design features and exhibit stiffness values reflective of the developing human brain. Using organoid growth, viability, cytoarchitecture, proliferation, and transcriptomic benchmarks, this work finds that organoids cultured within the bioprinted scaffold long-term are healthy and have expected neuroectodermal differentiation. Lastly, this work confirms that the endothelial cells (ECs) in printed channel structures can migrate toward and infiltrate into the embedded organoids. This work demonstrates a tunable 3D culturing platform that can be used to create more complex and accurate models of human brain development and underlying diseases. Embedded 3D bioprinting with gelatin methacrylate bioink creates a highly tunable in vitro culturing scaffold for brain organoid development. Predefined architectural features support the incorporation of endothelial cells (ECs) and enables the investigation of organoid-endothelial cell interactions. image
引用
收藏
页数:20
相关论文
共 123 条
[1]   Primate cell fusion disentangles gene regulatory divergence in neurodevelopment [J].
Agoglia, Rachel M. ;
Sun, Danqiong ;
Birey, Fikri ;
Yoon, Se-Jin ;
Miura, Yuki ;
Sabatini, Karen ;
Pasca, Sergiu P. ;
Fraser, Hunter B. .
NATURE, 2021, 592 (7854) :421-+
[2]   Bioprinted Schwann and Mesenchymal Stem Cell Co-Cultures for Enhanced Spatial Control of Neurite Outgrowth [J].
Alakpa, Enateri V. ;
Bahrd, Anton ;
Wiklund, Krister ;
Andersson, Magnus ;
Novikov, Lev N. ;
Ljungberg, Christina ;
Kelk, Peyman .
GELS, 2023, 9 (03)
[3]   Count-based differential expression analysis of RNA sequencing data using R and Bioconductor [J].
Anders, Simon ;
McCarthy, Davis J. ;
Chen, Yunshun ;
Okoniewski, Michal ;
Smyth, Gordon K. ;
Huber, Wolfgang ;
Robinson, Mark D. .
NATURE PROTOCOLS, 2013, 8 (09) :1765-1786
[4]   Generation of Functional Human 3D Cortico-Motor Assembloids [J].
Andersen, Jimena ;
Revah, Omer ;
Miura, Yuki ;
Thom, Nicholas ;
Amin, Neal D. ;
Kelley, Kevin W. ;
Singh, Mandeep ;
Chen, Xiaoyu ;
Thete, Mayuri Vijay ;
Walczak, Elisabeth M. ;
Vogel, Hannes ;
Fan, H. Christina ;
Pasca, Sergiu P. .
CELL, 2020, 183 (07) :1913-+
[5]  
Artel A, 2011, TISSUE ENG PT A, V17, P2133, DOI [10.1089/ten.tea.2010.0571, 10.1089/ten.TEA.2010.0571]
[6]   Static stretch affects neural stem cell differentiation in an extracellular matrix-dependent manner [J].
Arulmoli, Janahan ;
Pathak, Medha M. ;
McDonnell, Lisa P. ;
Nourse, Jamison L. ;
Tombola, Francesco ;
Earthman, James C. ;
Flanagan, Lisa A. .
SCIENTIFIC REPORTS, 2015, 5
[7]   Fused cerebral organoids model interactions between brain regions [J].
Bagley, Joshua A. ;
Reumann, Daniel ;
Bian, Shan ;
Levi-Strauss, Julie ;
Knoblich, Juergen A. .
NATURE METHODS, 2017, 14 (07) :743-+
[8]  
Berry A. S. F., 2021, MBIO, V12, DOI DOI 10.1128/MBIO.01214-21
[9]   Cell stress in cortical organoids impairs molecular subtype specification [J].
Bhaduri, Aparna ;
Andrews, Madeline G. ;
Mancia Leon, Walter ;
Jung, Diane ;
Shin, David ;
Allen, Denise ;
Jung, Dana ;
Schmunk, Galina ;
Haeussler, Maximilian ;
Salma, Jahan ;
Pollen, Alex A. ;
Nowakowski, Tomasz J. ;
Kriegstein, Arnold R. .
NATURE, 2020, 578 (7793) :142-+
[10]   Assembly of functionally integrated human forebrain spheroids [J].
Birey, Fikri ;
Andersen, Jimena ;
Makinson, Christopher D. ;
Islam, Saiful ;
Wei, Wu ;
Huber, Nina ;
Fan, H. Christina ;
Metzler, Kimberly R. Cordes ;
Panagiotakos, Georgia ;
Thom, Nicholas ;
O'Rourke, Nancy A. ;
Steinmetz, Lars M. ;
Bernstein, Jonathan A. ;
Hallmayer, Joachim ;
Huguenard, John R. ;
Pasca, Sergiu P. .
NATURE, 2017, 545 (7652) :54-+