Canonical lifts in multisymplectic De Donder-Weyl Hamiltonian field theories

被引:1
作者
Guerra IV, Arnoldo [1 ]
Roman-Roy, Narciso [2 ]
机构
[1] Univ Barcelona, Dept Fis Quant & Astrofis, Barcelona, Spain
[2] Univ Politecn Cataluna, Dept Math, Barcelona, Spain
关键词
De Donder-Weyl Hamiltonian field theories; covariant phase spaces; constraint analysis; canonical lifts; symmetries; Noether theorem; multisymplectic forms; CONSTRAINT ALGORITHM; SYMMETRIES; GEOMETRY; FORMULATION; EQUATIONS; CALCULUS; BUNDLES;
D O I
10.1088/1751-8121/ad6654
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define canonical lifts of vector fields to the multisymplectic multimomentum bundles of De Donder-Weyl Hamiltonian (first-order) field theories and to the appropriate premultisymplectic embedded constraint submanifolds on which singular field theories are studied. These new canonical lifts are used to study the so-called natural Noether symmetries present in both regular and singular Hamiltonian field theories along with their associated conserved quantities obtained from Noether's theorem. The Klein-Gordon field, the Polyakov bosonic string, and Einstein-Cartan gravity in 3+1 dimensions are analyzed in depth as applications of these concepts; as a peripheral result obtained in the analysis of the bosonic string, we provide a new geometrical interpretation of the well-known Virasoro constraint.
引用
收藏
页数:39
相关论文
共 45 条
[1]   The second-order problem for k-presymplectic Lagrangian field theories: application to the Einstein-Palatini model [J].
Adame-Carrillo, David ;
Gaset, Jordi ;
Roman-Roy, Narciso .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
[2]   GEOMETRIC FORMULATION OF CLASSICAL MECHANICS AND FIELD-THEORY [J].
ALDAYA, V ;
DEAZCARRAGA, JA .
RIVISTA DEL NUOVO CIMENTO, 1980, 3 (10) :1-66
[3]   VECTOR BUNDLES, RTH ORDER NOETHER INVARIANTS AND CANONICAL SYMMETRIES IN LAGRANGIAN FIELD-THEORY [J].
ALDAYA, V ;
AZCARRAGA, JAD .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (09) :1876-1880
[4]   VARIATIONAL PRINCIPLES ON RTH ORDER JETS OF FIBER BUNDLES IN FIELD-THEORY [J].
ALDAYA, V ;
AZCARRAGA, JAD .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (09) :1869-1875
[5]  
[Anonymous], 1997, New Lagrangian and Hamiltonian methods in field theory
[6]   HAMILTONIAN AND LAGRANGIAN CONSTRAINTS OF THE BOSONIC STRING [J].
BATLE, C ;
GOMIS, J ;
PONS, JM .
PHYSICAL REVIEW D, 1986, 34 (08) :2430-2432
[7]  
Becker Katrin., 2006, String theory and M-theory: A modern introduction, DOI [10.1017/CBO9780511816086, DOI 10.1017/CBO9780511816086]
[8]   On the geometry of multisymplectic manifolds [J].
Cantrijn, F ;
Ibort, A ;
De León, M .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1999, 66 :303-330
[9]  
CANTRIJN F, 1996, REND SEM MAT U POL T, V54, P225
[10]  
Carinena J. F., 1991, Differential Geometry and its Applications, V1, P345, DOI 10.1016/0926-2245(91)90013-Y