Uncertainty quantification of structural blade parameters for the aeroelastic damping of wind turbines: a code-to-code comparison

被引:0
作者
Verdonck, Hendrik [1 ]
Hach, Oliver [1 ]
Polman, Jelmer D. [2 ]
Schramm, Otto [2 ]
Balzani, Claudio [2 ]
Mueller, Sarah [3 ]
Rieke, Johannes [3 ]
机构
[1] German Aerosp Ctr DLR, Inst Aeroelast, Gottingen, Germany
[2] Leibniz Univ Hannover, Inst Wind Energy Syst, Hannover, Germany
[3] Nordex Energy SE & Co KG, Hamburg, Germany
关键词
GLOBAL SENSITIVITY-ANALYSIS; SIMULATION; STABILITY; FIDELITY;
D O I
10.5194/wes-9-1747-2024
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Uncertainty quantification (UQ) is a well-established category of methods to estimate the effect of parameter variations on a quantity of interest based on a solid mathematical foundation. In the wind energy field most UQ studies focus on the sensitivity of turbine loads. This article presents a framework, wrapped around a modern Python UQ library, to analyze the impact of uncertain turbine properties on aeroelastic stability. The UQ methodology applies a polynomial chaos expansion surrogate model. A comparison is made between different wind turbine simulation tools on the engineering model level (alaska/Wind, Bladed, HAWC2/HAWCStab2, and Simpack). Two case studies are used to demonstrate the effectiveness of the method to analyze the sensitivity of the aeroelastic damping of an unstable turbine mode to variations of structural blade cross-section parameters. The code-to-code comparison shows good agreement between the simulation tools for the reference model, but also significant differences in the sensitivities.
引用
收藏
页码:1747 / 1763
页数:17
相关论文
共 62 条
  • [1] A global sensitivity analysis framework for hybrid simulation
    Abbiati, G.
    Marelli, S.
    Tsokanas, N.
    Sudret, B.
    Stojadinovic, B.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 146
  • [2] [Anonymous], 2018, IfM: alaska/Wind User Manual
  • [3] [Anonymous], 2005, IEC 61400-1
  • [4] Bir G., 2008, 46th AIAA aerospace sciences meeting and exhibit, P1300
  • [5] Accuracy of an efficient framework for structural analysis of wind turbine blades
    Blasques, J. P.
    Bitsche, R. D.
    Fedorov, V.
    Lazarov, B. S.
    [J]. WIND ENERGY, 2016, 19 (09) : 1603 - 1621
  • [6] Performance of non-intrusive uncertainty quantification in the aeroservoelastic simulation of wind turbines
    Bortolotti, Pietro
    Canet, Helena
    Bottasso, Carlo L.
    Loganathan, Jaikumar
    [J]. WIND ENERGY SCIENCE, 2019, 4 (03) : 397 - 406
  • [7] Assessment of sensitivity and accuracy of BEM-based aeroelastic models on wind turbine load predictions
    Caboni, M.
    Carrion, M.
    Rodriguez, C.
    Schepers, G.
    Boorsma, K.
    Sanderse, B.
    [J]. SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2020), PTS 1-5, 2020, 1618
  • [8] Collier W., 2015, EWEA 2015 C 17 20 NO
  • [9] Dassault Systemes, 2021, Tech. rep.
  • [10] DNV, 2023, Bladed 4.15 Documentation