Integrating low salinity water, surfactant solution, and functionalized magnetite nanoparticles with natural acidic groups for enhanced oil recovery: Interfacial tension study

被引:4
作者
Sepahvand, Mohammad [1 ]
Ghalenavi, Hossein [1 ]
Goharrizi, Fahime Salari [2 ]
Schaffie, Mahin [1 ]
Hemmati-Sarapardeh, Abdolhossein [1 ,3 ]
机构
[1] Shahid Bahonar Univ Kerman, Dept Petr Engn, Kerman, Iran
[2] Shahid Bahonar Univ Kerman, Dept Chem, Kerman, Iran
[3] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing, Peoples R China
关键词
Interfacial tension (IFT); Nanoparticle; Magnetite; Natural acidic groups; Low salinity; Surfactant; METAL-OXIDE NANOPARTICLES; LIFE-CYCLE INVENTORY; WETTABILITY ALTERATION; AQUEOUS-SOLUTION; HIGH-TEMPERATURE; STABILITY; NANOFLUIDS; BEHAVIOR; NANOTECHNOLOGY; ASPHALTENE;
D O I
10.1016/j.molliq.2024.124944
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In recent years, nanoparticles (NPs) have become a popular choice for improving oil recovery through enhanced oil recovery (EOR) methods. NPs can enhance oil recovery by reducing interfacial tension (IFT), altering wettability, and decreasing the mobility ratio. In this study, magnetic NPs with acidic groups (tartaric acid and malic acid), which are natural acids found in fruits such as grapes and apples, were synthesized and functionalized to reduce the IFT between oil and water. Various characterizations tests, including zeta potential (ZP), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray analysis (EDAX), were used to determine the properties of NPs. Afterwards, the IFT behaviour of crude oil and aqueous solutions, containing surfactant sodium dodecyl sulfate (SDS), two types of salts namely sodium chloride (NaCl) and sodium sulfate (Na2SO4), and functionalized magnetite NPs with tartaric acid and malic acid were investigated. Two crude oils were used in this study: light (A) and heavy (B). The results showed that increasing salt concentration decreases the IFT for crude oils down to an optimum point (20000 ppm for both salts), after which the IFT increases with increasing salt concentration. The presence of functionalized Fe3O4@Tartaric acid NPs (300 ppm) in the aqueous solutions containing salts at their optimum concentration (20000 ppm) and SDS (300 ppm) can decrease the IFT more significantly than that of Fe3O4 and Fe3O4@Malic acid for both crude oils. This is due to higher stability and higher ZP of functionalized Fe3O4@Tartaric acid NPs compared to Fe3O4@Malic. The IFT for oil A decreases from 20.8 mN/m to 2.87 mN/m for light crude oil and from 32.96 mN/m to 1.91 mN/m for heavy crude oil. The IFT for heavy crude oil was more reduced than that of light crude oil, which was due to the presence of asphaltene, resin, and other surface-active agents in heavy crude oil, which can act as a natural surfactant in oil and help reducing the IFT.
引用
收藏
页数:19
相关论文
共 122 条
[1]   Facile and economical preparation method of nanoporous graphene/silica nanohybrid and evaluation of its Pickering emulsion properties for Chemical Enhanced oil Recovery (C-EOR) [J].
AfzaliTabar, M. ;
Alaei, M. ;
Bazmi, M. ;
Khojasteh, R. Ranjineh ;
Koolivand-Salooki, M. ;
Motiee, F. ;
Rashidi, A. M. .
FUEL, 2017, 206 :453-466
[2]  
Agi A, 2018, INT NANO LETT, V8, P49, DOI 10.1007/s40089-018-0237-3
[3]   A State-of-the-Art Review of Nanoparticles Application in Petroleum with a Focus on Enhanced Oil Recovery [J].
Agista, Madhan Nur ;
Guo, Kun ;
Yu, Zhixin .
APPLIED SCIENCES-BASEL, 2018, 8 (06)
[4]   A critical review of comparative global historical energy consumption and future demand: The story told so far [J].
Ahmad, Tanveer ;
Zhang, Dongdong .
ENERGY REPORTS, 2020, 6 :1973-1991
[5]   Interfacial tension behavior of a nonionic surfactant in oil/water system; salinity, pH, temperature, and ionic strength effects [J].
Akhlaghi, Naser ;
Riahi, Siavash ;
Parvaneh, Ronak .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 198
[6]   Interaction of Surface-Modified Alumina Nanoparticles and Surfactants at an Oil/Water Interface: A Neutron Reflectometry, Scattering, and Enhanced Oil Recovery Study [J].
Al-Shatty, Wafaa ;
Campana, Mario ;
Alexander, Shirin ;
Barron, Andrew R. .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (17) :19505-19514
[7]   Emerging applications of TiO2/SiO2/poly(acrylamide) nanocomposites within the engineered water EOR in carbonate reservoirs [J].
Ali, Jagar A. ;
Kolo, Kamal ;
Manshad, Abbas Khaksar ;
Stephen, Karl D. .
JOURNAL OF MOLECULAR LIQUIDS, 2021, 322
[8]  
Ali M., 2017, Influence of Miscible CO 2 Flooding on Wettability and Asphaltene Precipitation in Indiana Lime Stone Literaure Review Scope of Work This research primarily focuses on the phenomenon of wettability alteration in carbonate reservoir rocks
[9]   The synergistic effects of nanoparticle-surfactant nanofluids in EOR applications [J].
Almahfood, Mustafa ;
Bai, Baojun .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2018, 171 :196-210
[10]   A comprehensive review of nanoparticles applications in the oil and gas industry [J].
Alsaba, Mortadha T. ;
Al Dushaishi, Mohammed F. ;
Abbas, Ahmed K. .
JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2020, 10 (04) :1389-1399