Volumetric Hippocampus Segmentation Using 3D U-Net Based On Transfer Learning

被引:1
|
作者
Widodo, Ramadhan Sanyoto Sugiharso [1 ]
Purnama, I. Ketut Eddy [1 ]
Rachmadi, Reza Fuad [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Dept Elect Engn, Dept Comp Engn, Fac Intelligent Elect & Informat Technol, Surabaya 60111, Indonesia
关键词
3D U-Net; Hippocampus; MRI; Transfer Learning;
D O I
10.1109/CIVEMSA58715.2024.10586572
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The hippocampus, a crucial component of the human brain, is involved in fundamental cognitive processes such as learning, memory, and spatial navigation. However, it is susceptible to several neuropsychiatric disorders, including epilepsy, Alzheimer's disease, and depression. Utilizing Magnetic Resonance Imaging (MRI) techniques with efficient spatial navigation capabilities is crucial for assessing the physiological condition of the hippocampus. Labeling the hippocampus on MRI images primarily depends on manual methods, which are time-consuming and prone to errors between observers. The issue with MRI image processing lies in its demanding computational requirements and lengthy duration. Furthermore, there is a need for more three-dimensional hippocampal datasets for training deep-learning models, in which 3D labeled medical datasets are often scarce in medical imaging. This paper introduces a 3D U-Net architecture that utilizes a transfer learning model to segment the hippocampus from different pre-trained model scenarios. The results of all test scenarios indicate that the suggested model exhibits an average Dice Score, Intersection over Union (IoU) Score, and Sensitivity exceeding 0.85, 0.75, and 0.80, respectively. The proposed methodology enhances the model's ability to generalize within a shorter timeframe, even when dealing with limited volumetric datasets. These results are achieved through transfer learning, which decreases computational complexity by utilizing pre-learned characteristics from previous tasks.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] 3D Neuron Segmentation Based on 3D DSAC U-Net
    Guilin University of Electronic Technology, School of Computer Science and Information Security, Guilin
    541004, China
    不详
    514000, China
    不详
    541004, China
    不详
    541004, China
    Proc. - Int. Conf. Digit. Home, ICDH, (322-326):
  • [2] Medical Image Segmentation Based on 3D U-net
    Chen, Silu
    Hu, Guanghao
    Sun, Jun
    2020 19TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES 2020), 2020, : 130 - 133
  • [3] MULTIMODAL SEGMENTATION BASED ON A NOVEL 3D U-NET DEEP LEARNING ARCHITECTURE
    Swaroopa, K. M.
    Chetty, Girija
    2021 IEEE ASIA-PACIFIC CONFERENCE ON COMPUTER SCIENCE AND DATA ENGINEERING (CSDE), 2021,
  • [4] Patch-based 3D U-Net and transfer learning for longitudinal piglet brain segmentation on MRI
    Coupeau, P.
    Fasquel, J-B
    Mazerand, E.
    Menei, P.
    Montero-Menei, C. N.
    Dinomais, M.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 214
  • [5] CHOROID PLEXUS SEGMENTATION USING OPTIMIZED 3D U-NET
    Zhao, Li
    Feng, Xue
    Meyer, Craig H.
    Alsop, David C.
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 381 - 384
  • [6] 3D U-Net for Brain Tumour Segmentation
    Mehta, Raghav
    Arbel, Tal
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 254 - 266
  • [7] Blood Vessel Segmentation Based on the 3D Residual U-Net
    Xin, Mulin
    Wen, Jing
    Wang, Yi
    Yu, Wei
    Fang, Bin
    Hu, Jun
    Xu, Yongmei
    Linghu, Chunhong
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (11)
  • [8] Brain Tumor Segmentation Based on 3D Residual U-Net
    Bhalerao, Megh
    Thakur, Siddhesh
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 218 - 225
  • [9] LIVER VESSELS SEGMENTATION BASED ON 3D RESIDUAL U-NET
    Yu, Wei
    Fang, Bin
    Liu, Yongqing
    Gao, Mingqi
    Zheng, Shenhai
    Wang, Yi
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 250 - 254
  • [10] A Novel U-Net Based Deep Learning Method for 3D Cardiovascular MRI Segmentation
    Lu, Yinan
    Zhao, Yan
    Chen, Xing
    Guo, Xiaoxin
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022