Volumetric Hippocampus Segmentation Using 3D U-Net Based On Transfer Learning

被引:2
作者
Widodo, Ramadhan Sanyoto Sugiharso [1 ]
Purnama, I. Ketut Eddy [1 ]
Rachmadi, Reza Fuad [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Dept Elect Engn, Dept Comp Engn, Fac Intelligent Elect & Informat Technol, Surabaya 60111, Indonesia
来源
2024 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS, CIVEMSA 2024 | 2024年
关键词
3D U-Net; Hippocampus; MRI; Transfer Learning;
D O I
10.1109/CIVEMSA58715.2024.10586572
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The hippocampus, a crucial component of the human brain, is involved in fundamental cognitive processes such as learning, memory, and spatial navigation. However, it is susceptible to several neuropsychiatric disorders, including epilepsy, Alzheimer's disease, and depression. Utilizing Magnetic Resonance Imaging (MRI) techniques with efficient spatial navigation capabilities is crucial for assessing the physiological condition of the hippocampus. Labeling the hippocampus on MRI images primarily depends on manual methods, which are time-consuming and prone to errors between observers. The issue with MRI image processing lies in its demanding computational requirements and lengthy duration. Furthermore, there is a need for more three-dimensional hippocampal datasets for training deep-learning models, in which 3D labeled medical datasets are often scarce in medical imaging. This paper introduces a 3D U-Net architecture that utilizes a transfer learning model to segment the hippocampus from different pre-trained model scenarios. The results of all test scenarios indicate that the suggested model exhibits an average Dice Score, Intersection over Union (IoU) Score, and Sensitivity exceeding 0.85, 0.75, and 0.80, respectively. The proposed methodology enhances the model's ability to generalize within a shorter timeframe, even when dealing with limited volumetric datasets. These results are achieved through transfer learning, which decreases computational complexity by utilizing pre-learned characteristics from previous tasks.
引用
收藏
页数:6
相关论文
共 18 条
[1]   Hippocampus in health and disease: An overview [J].
Anand, Kuljeet Singh ;
Dhikav, Vikas .
ANNALS OF INDIAN ACADEMY OF NEUROLOGY, 2012, 15 (04) :239-246
[2]   The Medical Segmentation Decathlon [J].
Antonelli, Michela ;
Reinke, Annika ;
Bakas, Spyridon ;
Farahani, Keyvan ;
Kopp-Schneider, Annette ;
Landman, Bennett A. ;
Litjens, Geert ;
Menze, Bjoern ;
Ronneberger, Olaf ;
Summers, Ronald M. ;
van Ginneken, Bram ;
Bilello, Michel ;
Bilic, Patrick ;
Christ, Patrick F. ;
Do, Richard K. G. ;
Gollub, Marc J. ;
Heckers, Stephan H. ;
Huisman, Henkjan ;
Jarnagin, William R. ;
McHugo, Maureen K. ;
Napel, Sandy ;
Pernicka, Jennifer S. Golia ;
Rhode, Kawal ;
Tobon-Gomez, Catalina ;
Vorontsov, Eugene ;
Meakin, James A. ;
Ourselin, Sebastien ;
Wiesenfarth, Manuel ;
Arbelaez, Pablo ;
Bae, Byeonguk ;
Chen, Sihong ;
Daza, Laura ;
Feng, Jianjiang ;
He, Baochun ;
Isensee, Fabian ;
Ji, Yuanfeng ;
Jia, Fucang ;
Kim, Ildoo ;
Maier-Hein, Klaus ;
Merhof, Dorit ;
Pai, Akshay ;
Park, Beomhee ;
Perslev, Mathias ;
Rezaiifar, Ramin ;
Rippel, Oliver ;
Sarasua, Ignacio ;
Shen, Wei ;
Son, Jaemin ;
Wachinger, Christian ;
Wang, Liansheng .
NATURE COMMUNICATIONS, 2022, 13 (01)
[3]   Fast and Precise Hippocampus Segmentation Through Deep Convolutional Neural Network Ensembles and Transfer Learning [J].
Ataloglou, Dimitrios ;
Dimou, Anastasios ;
Zarpalas, Dimitrios ;
Daras, Petros .
NEUROINFORMATICS, 2019, 17 (04) :563-582
[4]   Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol [J].
Boccardi, Marina ;
Bocchetta, Martina ;
Morency, Felix C. ;
Collins, D. Louis ;
Nishikawa, Masami ;
Ganzola, Rossana ;
Grothe, Michel J. ;
Wolf, Dominik ;
Redolfi, Alberto ;
Pievani, Michela ;
Antelmi, Luigi ;
Fellgiebel, Andreas ;
Matsuda, Hiroshi ;
Teipel, Stefan ;
Duchesne, Simon ;
Jack, Clifford R., Jr. ;
Frisoni, Giovanni B. .
ALZHEIMERS & DEMENTIA, 2015, 11 (02) :175-183
[5]   Delphi definition of the EADC-ADNI Harmonized Protocol for hippocampal segmentation on magnetic resonance [J].
Boccardi, Marina ;
Bocchetta, Martina ;
Apostolova, Liana G. ;
Barnes, Josephine ;
Bartzokis, George ;
Corbetta, Gabriele ;
DeCarli, Charles ;
deToledo-Morrell, Leyla ;
Firbank, Michael ;
Ganzola, Rossana ;
Gerritsen, Lotte ;
Henneman, Wouter ;
Killiany, Ronald J. ;
Malykhin, Nikolai ;
Pasqualetti, Patrizio ;
Pruessner, Jens C. ;
Redolfi, Alberto ;
Robitaille, Nicolas ;
Soininen, Hilkka ;
Tolomeo, Daniele ;
Wang, Lei ;
Watson, Craig ;
Wolf, Henrike ;
Duvernoy, Henri ;
Duchesne, Simon ;
Jack, Clifford R., Jr. ;
Frisoni, Giovanni B. .
ALZHEIMERS & DEMENTIA, 2015, 11 (02) :126-138
[6]   Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm [J].
Buda, Mateusz ;
Saha, Ashirbani ;
Mazurowski, Maciej A. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 109 :218-225
[7]   Hippocampus Segmentation Using U-Net Convolutional Network from Brain Magnetic Resonance Imaging (MRI) [J].
Hazarika, Ruhul Amin ;
Maji, Arnab Kumar ;
Syiem, Raplang ;
Sur, Samarendra Nath ;
Kandar, Debdatta .
JOURNAL OF DIGITAL IMAGING, 2022, 35 (04) :893-909
[8]  
Liu Z, 2019, Arxiv, DOI arXiv:1810.05270
[9]   Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients [J].
Marcos, Miguel ;
Belhassen-Garcia, Moncef ;
Sanchez-Puente, Antonio ;
Sampedro-Gomez, Jesus ;
Azibeiro, Raul ;
Dorado-Diaz, Pedro-Ignacio ;
Marcano-Millan, Edgar ;
Garcia-Vidal, Carolina ;
Moreiro-Barroso, Maria-Teresa ;
Cubino-Boveda, Noelia ;
Perez-Garcia, Maria-Luisa ;
Rodriguez-Alonso, Beatriz ;
Encinas-Sanchez, Daniel ;
Pena-Balbuena, Sonia ;
Sobejano-Fuertes, Eduardo ;
Ines, Sandra ;
Carbonell, Cristina ;
Lopez-Parra, Miriam ;
Andrade-Meira, Fernanda ;
Lopez-Bernus, Amparo ;
Lorenzo, Catalina ;
Carpio, Adela ;
Polo-San-Ricardo, David ;
Sanchez-Hernandez, Miguel-Vicente ;
Borras, Rafael ;
Sagredo-Meneses, Victor ;
Sanchez, Pedro-Luis ;
Soriano, Alex ;
Martin-Oterino, Jose-Angel .
PLOS ONE, 2021, 16 (04)
[10]   Applying 3D U-Net Architecture to the Task of Multi-Organ Segmentation in Computed Tomography [J].
Radiuk, Pavlo .
APPLIED COMPUTER SYSTEMS, 2020, 25 (01) :43-50