Non-adiabatic direct quantum dynamics using force fields: Toward solvation

被引:6
|
作者
Cigrang, L. L. E. [1 ]
Green, J. A. [2 ]
Gomez, S. [3 ]
Cerezo, J. [4 ,5 ]
Improta, R. [6 ]
Prampolini, G. [7 ]
Santoro, F. [7 ]
Worth, G. A. [1 ]
机构
[1] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
[2] Goethe Univ, Inst Phys Theoret Chem, Max von Laue Str 7, D-60438 Frankfurt, Germany
[3] Univ Salamanca, Dept Quim Fis, Salamanca 37008, Spain
[4] Univ Autonoma Madrid, Dept Quim, Madrid 28049, Spain
[5] Univ Autonoma Madrid, Inst Adv Res Chem Sci IAdChem, Madrid 28049, Spain
[6] Ist Biostrutture & Bioimmagini CNR, Via De Amicis 95, I-80145 Naples, Italy
[7] Area Ric CNR, Ist Chim Composti Organometall ICCOM CNR, Via Moruzzi 1, I-56124 Pisa, Italy
基金
英国工程与自然科学研究理事会;
关键词
POTENTIAL-ENERGY SURFACES; MOLECULAR-DYNAMICS; GAUSSIAN WAVEPACKETS; PHOTOCHEMISTRY; ALGORITHM; PHOTOPHYSICS; SIMULATIONS; THYMINE; SYSTEMS; STATES;
D O I
10.1063/5.0204911
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantum dynamics simulations are becoming a powerful tool for understanding photo-excited molecules. Their poor scaling, however, means that it is hard to study molecules with more than a few atoms accurately, and a major challenge at the moment is the inclusion of the molecular environment. Here, we present a proof of principle for a way to break the two bottlenecks preventing large but accurate simulations. First, the problem of providing the potential energy surfaces for a general system is addressed by parameterizing a standard force field to reproduce the potential surfaces of the molecule's excited-states, including the all-important vibronic coupling. While not shown here, this would trivially enable the use of an explicit solvent. Second, to help the scaling of the nuclear dynamics propagation, a hierarchy of approximations is introduced to the variational multi-configurational Gaussian method that retains the variational quantum wavepacket description of the key quantum degrees of freedom and uses classical trajectories for the remaining in a quantum mechanics/molecular mechanics like approach. The method is referred to as force field quantum dynamics (FF-QD), and a two-state pi pi*/n pi* model of uracil, excited to its lowest bright pi pi* state, is used as a test case.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Formulation of transition dipole gradients for non-adiabatic dynamics with polaritonic states
    Lee, In Seong
    Filatov, Michael
    Min, Seung Kyu
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (15)
  • [32] Modelling non-adiabatic processes using correlated electron-ion dynamics
    McEniry, E. J.
    Wang, Y.
    Dundas, D.
    Todorov, T. N.
    Stella, L.
    Miranda, R. P.
    Fisher, A. J.
    Horsfield, A. P.
    Race, C. P.
    Mason, D. R.
    Foulkes, W. M. C.
    Sutton, A. P.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 77 (03) : 305 - 329
  • [33] Non-adiabatic dynamics of Rydberg-excited diethylamine
    Qiu, Ziheng
    Wei, Jie
    Li, Duoduo
    Long, Jinyou
    Zhang, Song
    Zhang, Bing
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 274
  • [34] Sampling effects in quantum mechanical/molecular mechanics trajectory surface hopping non-adiabatic dynamics
    Avagliano, Davide
    Lorini, Emilio
    Gonzalez, Leticia
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2223):
  • [35] Non-adiabatic dynamics using time-dependent density functional theory: Assessing the coupling strengths
    Tavernelli, Ivano
    Tapavicza, Enrico
    Rothlisberger, Ursula
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2009, 914 (1-3): : 22 - 29
  • [36] SHARP pack: A modular software for incorporating nuclear quantum effects into non-adiabatic dynamics simulations
    Limbu, Dil K.
    Shakib, Farnaz A.
    SOFTWARE IMPACTS, 2024, 19
  • [37] HIGH FIDELITY UNIVERSAL SET OF QUANTUM GATES USING NON-ADIABATIC RAPID PASSAGE
    Li, Ran
    Hoover, Melique
    Gaitan, Frank
    QUANTUM INFORMATION & COMPUTATION, 2009, 9 (3-4) : 290 - 316
  • [38] Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
    White, Alexander J.
    Gorshkov, Vyacheslav N.
    Tretiak, Sergei
    Mozyrsky, Dmitry
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (01)
  • [39] Non-adiabatic dynamics modeling framework for materials in extreme conditions
    Xiao, Hai
    Jaramillo-Botero, Andres
    Theofanis, Patrick L.
    Goddard, William A., III
    MECHANICS OF MATERIALS, 2015, 90 : 243 - 252
  • [40] The ΔSCF method for non-adiabatic dynamics of systems in the liquid phase
    Vandaele, Eva
    Malis, Momir
    Luber, Sandra
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (13)