Multi-omics data integration and drug screening of AML cancer using Generative Adversarial Network

被引:3
|
作者
Afroz, Sabrin [1 ]
Islam, Nadira [1 ]
Habib, Md Ahsan [1 ,4 ]
Reza, Md Selim [2 ,4 ]
Alam, Md Ashad [3 ,4 ]
机构
[1] Mawlana Bhashani Sci & Technol Univ, Dept Informat & Commun Technol, Tangail, Bangladesh
[2] Tulane Univ, Tulane Ctr Biomed Informat & Genom, Deming Dept Med, New Orleans, LA 70112 USA
[3] Ochsner Clin Fdn, Ochsner Ctr Outcomes Res, Ochsner Res, New Orleans, LA 70121 USA
[4] Stat Learning Grp, Dhaka, Bangladesh
关键词
Multi-omics; Cancer; Genotype; Phenotype; Precision medicine; FAILURE;
D O I
10.1016/j.ymeth.2024.04.017
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In the era of precision medicine, accurate disease phenotype prediction for heterogeneous diseases, such as cancer, is emerging due to advanced technologies that link genotypes and phenotypes. However, it is difficult to integrate different types of biological data because they are so varied. In this study, we focused on predicting the traits of a blood cancer called Acute Myeloid Leukemia (AML) by combining different kinds of biological data. We used a recently developed method called Omics Generative Adversarial Network (GAN) to better classify cancer outcomes. The primary advantages of a GAN include its ability to create synthetic data that is nearly indistinguishable from real data, its high flexibility, and its wide range of applications, including multi-omics data analysis. In addition, the GAN was effective at combining two types of biological data. We created synthetic datasets for gene activity and DNA methylation. Our method was more accurate in predicting disease traits than using the original data alone. The experimental results provided evidence that the creation of synthetic data through interacting multi-omics data analysis using GANs improves the overall prediction quality. Furthermore, we identified the top -ranked significant genes through statistical methods and pinpointed potential candidate drug agents through in-silico studies. The proposed drugs, also supported by other independent studies, might play a crucial role in the treatment of AML cancer.
引用
收藏
页码:138 / 150
页数:13
相关论文
共 50 条
  • [31] Deep learning and multi-omics approach to predict drug responses in cancer
    Wang, Conghao
    Lye, Xintong
    Kaalia, Rama
    Kumar, Parvin
    Rajapakse, Jagath C.
    BMC BIOINFORMATICS, 2022, 22 (SUPPL 10)
  • [32] Integration strategies of multi-omics data for machine learning analysis
    Picard M.
    Scott-Boyer M.-P.
    Bodein A.
    Périn O.
    Droit A.
    Computational and Structural Biotechnology Journal, 2021, 19 : 3735 - 3746
  • [33] Multi-omics data integration methods and their applications in psychiatric disorders
    Sathyanarayanan, Anita
    Mueller, Tamara T.
    Moni, Mohammad Ali
    Schueler, Katja
    Baune, Bernhard T.
    Lio, Pietro
    Mehta, Divya
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2023, 69 : 26 - 46
  • [34] A guide to multi-omics data collection and integration for translational medicine
    Athieniti, Efi
    Spyrou, George M.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 134 - 149
  • [35] A guide to multi-omics data collection and integration for translational medicine
    Athieniti, Efi
    Spyrou, George M.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 134 - 149
  • [36] Integration of multi-omics data for survival prediction of lung adenocarcinoma
    Guo, Dingjie
    Wang, Yixian
    Chen, Jing
    Liu, Xin
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 250
  • [37] MOMIC: A Multi-Omics Pipeline for Data Analysis, Integration and Interpretation
    Madrid-Marquez, Laura
    Rubio-Escudero, Cristina
    Pontes, Beatriz
    Gonzalez-Perez, Antonio
    Riquelme, Jose C.
    Saez, Maria E.
    APPLIED SCIENCES-BASEL, 2022, 12 (08):
  • [38] Unsupervised Multi-Omics Data Integration Methods: A Comprehensive Review
    Vahabi, Nasim
    Michailidis, George
    FRONTIERS IN GENETICS, 2022, 13
  • [39] Deep learning and multi-omics approach to predict drug responses in cancer
    Conghao Wang
    Xintong Lye
    Rama Kaalia
    Parvin Kumar
    Jagath C. Rajapakse
    BMC Bioinformatics, 22
  • [40] Deep neural network aided multi-omics drug response prediction for breast cancer
    Vishnusankar, A.
    Unniyattil, Abhinav
    Haneem, E. M.
    Abinas, V.
    Nazeer, K. A. Abdul
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,