Radiomics analysis of intratumoral and different peritumoral regions from multiparametric MRI for evaluating HER2 status of breast cancer: A comparative study

被引:11
作者
Zhou, Jing [1 ,2 ]
Yu, Xuan [1 ,2 ]
Wu, Qingxia [3 ,4 ]
Wu, Yaping [1 ,2 ]
Fu, Cong [1 ,2 ]
Wang, Yunxia [1 ,2 ]
Hai, Menglu [5 ,6 ]
Tan, Hongna [1 ,2 ]
Wang, Meiyun [1 ,2 ]
机构
[1] Zhengzhou Univ, Peoples Hosp, Henan Prov Peoples Hosp, Dept Med Imaging, Zhengzhou 450003, Henan, Peoples R China
[2] Imaging Diag Neurol Dis & Res Lab Henan Prov, Zhengzhou 450003, Henan, Peoples R China
[3] Beijing United Imaging Res Inst Intelligent Imagin, Beijing 100089, Peoples R China
[4] United Imaging Intelligence Beijing Co Ltd, Beijing 100089, Peoples R China
[5] Zhengzhou Univ, Affiliated Canc Hosp, Dept Radiol, Zhengzhou 450008, Henan, Peoples R China
[6] Henan Canc Hosp, Zhengzhou, Henan, Peoples R China
关键词
Breast cancer; Radiomics; Human epithelial growth factor receptor 2; Multiparametric MRI; COMPUTED-TOMOGRAPHY; SUBTYPES; RELAPSE;
D O I
10.1016/j.heliyon.2024.e28722
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Purpose: To investigate the potential of radiomics signatures (RSs) from intratumoral and peritumoral regions on multiparametric magnetic resonance imaging (MRI) to noninvasively evaluate HER2 status in breast cancer. Method: In this retrospective study, 992 patients with pathologically confirmed breast cancers who underwent preoperative MRI were enrolled. The breast cancer lesions were segmented manually, and the intratumor region of interest (ROI Intra ) was dilated by 2, 4, 6 and 8 mm (ROI Peri2mm , ROI Peri4mm , ROI Peri6mm , and ROI Peri8mm , respectively). Quantitative radiomics features were extracted from dynamic contrast -enhanced T1 -weighted imaging (DCE-T1), fat -saturated T2 -weighted imaging (T2) and diffusion -weighted imaging (DWI). A three -step procedure was performed for feature selection, and RSs were constructed using a support vector machine (SVM) to predict HER2 status. Result: The best single -area RSs for predicting HER2 status were DCE_Peri4mm-RS, T2_Peri4mmRS, and DWI_Peri4mm-RS, yielding areas under the curve (AUCs) of 0.716 (95% confidence interval (CI), 0.648 -0.778), 0.706 (95% CI, 0.637 -0.768), and 0.719 (95% CI, 0.651 -0.780), respectively, in the test set. The optimal RSs combining intratumoral and peritumoral regions for evaluating HER2 status were DCE-T1_Intra + DCE_Peri4mm-RS, T2_Intra + T2_Peri6mm-RS and DWI_Intra + DWI_Peri4mm-RS, with AUCs of 0.752 (95% CI, 0.686 -0.810), 0.754 (95% CI, 0.688 -0.812) and 0.725 (95% CI, 0.657 -0.786), respectively, in the test set. Combining three sequences in the ROI Intra , ROI Peri2mm , ROI Peri4mm , ROI Peri6mm and ROI Peri8mm areas, the optimal RS was DCE-T1_Peri4mm + T2_Peri4mm + DWI_Peri4mm-RS, achieving an AUC of 0.795 (95% CI, 0.733 -0.849) in the test set. Conclusion: This study systematically explored the influence of the intratumoral region, different peritumoral sizes and their combination in radiomics analysis for predicting HER2 status in breast cancer based on multiparametric MRI and found the optimal RS.
引用
收藏
页数:10
相关论文
共 33 条
[1]   Machine and deep learning methods for radiomics [J].
Avanzo, Michele ;
Wei, Lise ;
Stancanello, Joseph ;
Vallieres, Martin ;
Rao, Arvind ;
Morin, Olivier ;
Mattonen, Sarah A. ;
El Naqa, Issam .
MEDICAL PHYSICS, 2020, 47 (05) :E185-E202
[2]   TNF-α in promotion and progression of cancer [J].
Balkwill, Frances .
CANCER AND METASTASIS REVIEWS, 2006, 25 (03) :409-416
[3]   Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer [J].
Braman, Nathaniel ;
Prasanna, Prateek ;
Whitney, Jon ;
Singh, Salendra ;
Beig, Niha ;
Etesami, Maryam ;
Bates, David D. B. ;
Gallagher, Katherine ;
Bloch, B. Nicolas ;
Vulchi, Manasa ;
Turk, Paulette ;
Bera, Kaustav ;
Abraham, Jame ;
Sikov, William M. ;
Somlo, George ;
Harris, Lyndsay N. ;
Gilmore, Hannah ;
Plecha, Donna ;
Varadan, Vinay ;
Madabhushi, Anant .
JAMA NETWORK OPEN, 2019, 2 (04)
[4]   Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI [J].
Braman, Nathaniel M. ;
Etesami, Maryam ;
Prasanna, Prateek ;
Dubchuk, Christina ;
Gilmore, Hannah ;
Tiwari, Pallavi ;
Pletcha, Donna ;
Madabhushi, Anant .
BREAST CANCER RESEARCH, 2017, 19
[5]   Prediction of HER2 expression in breast cancer by combining PET/CT radiomic analysis and machine learning [J].
Chen, Yiwen ;
Wang, Ziyang ;
Yin, Guotao ;
Sui, Chunxiao ;
Liu, Zifan ;
Li, Xiaofeng ;
Chen, Wei .
ANNALS OF NUCLEAR MEDICINE, 2022, 36 (02) :172-182
[6]   Optimizing the Peritumoral Region Size in Radiomics Analysis for Sentinel Lymph Node Status Prediction in Breast Cancer [J].
Ding, Jie ;
Chen, Shenglan ;
Sosa, Mario Serrano ;
Cattell, Renee ;
Lei, Lan ;
Sun, Junqi ;
Prasanna, Prateek ;
Liu, Chunling ;
Huang, Chuan .
ACADEMIC RADIOLOGY, 2022, 29 :S223-S228
[7]   Preoperative Computed Tomography Radiomics Analysis for Predicting Receptors Status and Ki-67 Levels in Breast Cancer [J].
Fan, Yuan ;
Pan, Xuelin ;
Yang, Fan ;
Liu, Siyun ;
Wang, Zhu ;
Sun, Jiayu ;
Chen, Jie .
AMERICAN JOURNAL OF CLINICAL ONCOLOGY-CANCER CLINICAL TRIALS, 2022, 45 (12) :526-533
[8]   Radiomics and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography in the Breast Lesions Classification [J].
Fusco, Roberta ;
Piccirillo, Adele ;
Sansone, Mario ;
Granata, Vincenza ;
Rubulotta, Maria Rosaria ;
Petrosino, Teresa ;
Barretta, Maria Luisa ;
Vallone, Paolo ;
Di Giacomo, Raimondo ;
Esposito, Emanuela ;
Di Bonito, Maurizio ;
Petrillo, Antonella .
DIAGNOSTICS, 2021, 11 (05)
[9]   Immune microenvironment characterisation and dynamics during anti-HER2-based neoadjuvant treatment in HER2-positive breast cancer [J].
Griguolo, G. ;
Serna, G. ;
Pascual, T. ;
Fasani, R. ;
Guardia, X. ;
Chic, N. ;
Pare, L. ;
Pernas, S. ;
Munoz, M. ;
Oliveira, M. ;
Vidal, M. ;
Llombart-Cussac, A. ;
Cortes, J. ;
Galvan, P. ;
Bermejo, B. ;
Martinez, N. ;
Lopez, R. ;
Morales, S. ;
Garau, I ;
Manso, L. ;
Alarcon, J. ;
Martinez, E. ;
Villagrasa, P. ;
Prat, A. ;
Nuciforo, P. .
NPJ PRECISION ONCOLOGY, 2021, 5 (01)
[10]   Radiomic Nomogram for Pretreatment Prediction of Pathologic Complete Response to Neoadjuvant Therapy in Breast Cancer: Predictive Value of Staging Contrast-enhanced CT [J].
Huang, Xiaomei ;
Mai, Jinhai ;
Huang, Yanqi ;
He, Lan ;
Chen, Xin ;
Wu, Xiaomei ;
Li, Yexing ;
Yang, Xiaojun ;
Dong, Mengyi ;
Huang, Jia ;
Zhang, Fang ;
Liang, Changhong ;
Liu, Zaiyi .
CLINICAL BREAST CANCER, 2021, 21 (04) :E388-E401