Production of nitric/nitrous oxide by an atmospheric pressure plasma jet

被引:49
作者
Douat, C. [1 ]
Huebner, S. [2 ]
Engeln, R. [1 ]
Benedikt, J. [2 ]
机构
[1] Eindhoven Univ Technol, PMP, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Ruhr Univ Bochum, Inst Expt Phys 2, Res Grp React Plasmas, D-44780 Bochum, Germany
关键词
plasma jet; atmospheric pressure plasma; plasma medicine; absorption spectroscopy; LASER-ABSORPTION-SPECTROSCOPY; CHEMISTRY;
D O I
10.1088/0963-0252/25/2/025027
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Absolute densities of nitrous species were studied in an atmospheric pressure RF plasma jet. The measurement of NO and N2O densities has been performed mainly by means of ex situ quantum-cascade laser absorption spectroscopy via a multi-pass cell in Herriot configuration. The dependence of the species' production on individual parameters such as power, flow and oxygen, nitrogen and water admixture is shown. NO and N2O densities are found to increase with absorbed power, while an increase in the gas flow induces a decrease of these densities due to a reduction in residence time of the gas in the plasma. Actually, a change of these two parameters, absorbed power and gas flow, induces a variation of energy density. The higher energy density, the higher NO and N2O densities. The NO and N2O densities are strongly gas mixture dependent. A change of that parameter allows to choose between a NO-rich or a N2O-rich regime. NO and N2O densities increase as a function of the N-2 admixture, while increasing oxygen, above a minimum value, reduces the densities of both NO and N2O. When adding water instead of oxygen to the gas mixture the reduction in the NO density is much less. For maximal NO and N2O formation a ratio of about He/N-2/O-2 = 99.5/0.36/0.07 is found to be the most efficient in the mu-APPJ. However, it was found that the absorbed power in the plasma always reduces with increasing admixtures. The validation of the results obtained with quantum-cascade absorption spectroscopy with mass spectrometry shows how the two measurement techniques can complement each other. Finally a comparison of our results and others works is presented.
引用
收藏
页数:11
相关论文
共 45 条
[31]   Applications of quantum cascade lasers in plasma diagnostics: a review [J].
Roepcke, J. ;
Davies, P. B. ;
Lang, N. ;
Rousseau, A. ;
Welzel, S. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (42)
[32]   The HITRAN 2008 molecular spectroscopic database [J].
Rothman, L. S. ;
Gordon, I. E. ;
Barbe, A. ;
Benner, D. Chris ;
Bernath, P. E. ;
Birk, M. ;
Boudon, V. ;
Brown, L. R. ;
Campargue, A. ;
Champion, J. -P. ;
Chance, K. ;
Coudert, L. H. ;
Dana, V. ;
Devi, V. M. ;
Fally, S. ;
Flaud, J. -M. ;
Gamache, R. R. ;
Goldman, A. ;
Jacquemart, D. ;
Kleiner, I. ;
Lacome, N. ;
Lafferty, W. J. ;
Mandin, J. -Y. ;
Massie, S. T. ;
Mikhailenko, S. N. ;
Miller, C. E. ;
Moazzen-Ahmadi, N. ;
Naumenko, O. V. ;
Nikitin, A. V. ;
Orphal, J. ;
Perevalov, V. I. ;
Perrin, A. ;
Predoi-Cross, A. ;
Rinsland, C. P. ;
Rotger, M. ;
Simeckova, M. ;
Smith, M. A. H. ;
Sung, K. ;
Tashkun, S. A. ;
Tennyson, J. ;
Toth, R. A. ;
Vandaele, A. C. ;
Vander Auwera, J. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (9-10) :533-572
[33]  
Sadeghi N., 2004, J PLASMA FUSION RES, V80, P767, DOI DOI 10.1585/JSPF.80.767
[34]   Atomic nitrogen: a parameter study of a micro-scale atmospheric pressure plasma jet by means of molecular beam mass spectrometry [J].
Schneider, Simon ;
Duennbier, Mario ;
Huebner, Simon ;
Reuter, Stephan ;
Benedikt, Jan .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (50)
[35]   The Role of VUV Radiation in the Inactivation of Bacteria with an Atmospheric Pressure Plasma Jet [J].
Schneider, Simon ;
Lackmann, Jan-Wilm ;
Ellerweg, Dirk ;
Denis, Benjamin ;
Narberhaus, Franz ;
Bandow, Julia E. ;
Benedikt, Jan .
PLASMA PROCESSES AND POLYMERS, 2012, 9 (06) :561-568
[36]   NITROUS-OXIDE SEDATION IN DENTISTRY - A COMPARISON BETWEEN ROTAMETER SETTINGS, PHARYNGEAL CONCENTRATIONS AND BLOOD-LEVELS OF NITROUS-OXIDE [J].
SHER, AM ;
BRAUDE, BM ;
CLEATONJONES, PE ;
MOYES, DG ;
MALLETT, J .
ANAESTHESIA, 1984, 39 (03) :236-239
[37]   A plasma needle generates nitric oxide [J].
Stoffels, E. ;
Aranda Gonzalvo, Y. ;
Whitmore, T. D. ;
Seymour, D. L. ;
Rees, J. A. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2006, 15 (03) :501-506
[38]   Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure [J].
Van Gaens, W. ;
Iseni, S. ;
Schmidt-Bleker, A. ;
Weltmann, K-D ;
Reuter, S. ;
Bogaerts, A. .
NEW JOURNAL OF PHYSICS, 2015, 17
[39]   NO production in an RF plasma jet at atmospheric pressure [J].
van Gessel, A. F. H. ;
Alards, K. M. J. ;
Bruggeman, P. J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (26)
[40]   In situ absolute air, O3 and NO densities in the effluent of a cold RF argon atmospheric pressure plasma jet obtained by molecular beam mass spectrometry [J].
van Ham, B. T. J. ;
Hofmann, S. ;
Brandenburg, R. ;
Bruggeman, P. J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (22)