Quantifying the Plant Area Index of Overstory and Understory Vegetation on Sloped Terrain Using Single-Station Terrestrial Laser Scanner

被引:0
作者
Ma, Lixia [1 ]
Yu, Dongsheng [1 ,2 ]
Chen, Yang [1 ,2 ]
Feng, Kaiyue [1 ,2 ]
Tang, Hao [3 ]
Sumnall, Matthew J. [4 ]
Zheng, Guang [5 ]
机构
[1] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China
[2] Univ Chinese Acad Sci, Coll Adv Agr Sci, Beijing 100049, Peoples R China
[3] Natl Univ Singapore, Dept Geog, Singapore 117570, Singapore
[4] Virginia Polytech Inst & State Univ, Dept Forest Resources & Environm Conservat, Blacksburg, VA 24061 USA
[5] Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210023, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
美国国家科学基金会;
关键词
Overstory vegetation (OV); plant area index (PAI); sloped terrain; terrestrial laser scanner (TLS); understory vegetation (UV); ELEMENT CLUMPING INDEX; GAP FRACTION; AIRBORNE LIDAR; SOIL-EROSION; CANOPY; FORESTS; STANDS; LAI; PHOTOGRAPHY; PROFILES;
D O I
10.1109/TGRS.2024.3395584
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Estimating forest plant area index (PAI) with the simultaneous separation of overstory vegetation (OV) and understory vegetation (UV) is essential to study forest carbon and water cycles. Measuring PAI of OV and UV using conventional field surveys within forests is challenging, particularly for subtropical regions of China, where terrain slope can exceed 10 degrees. The effective PAI (PAIe) instead of PAI for UV is usually measured by the conventional method of subtracting PAIe of OV from total PAIe. We find PAIe obtained using this strategy is underestimated by 25%-85%. Thus, we propose an approach to estimate PAIe and PAI of both OV and UV on sloped terrain by using single-station (SS) terrestrial laser scanner (TLS) data. Results are verified by comparing them with multistation (MS) TLS data acquired coincidentally. Then we analyze the effects of horizontal range and slope correction on PAI estimated from SS TLS data. The results show that the correlation between SS and MS PAI (PAIe) is strong, with R-2 of 0.88 (0.81) and 0.52 (0.75) (p < 0.01) for OV and UV, respectively. We recommend imposing a horizontal 20-m radius range for data acquired from SS TLS for PAI estimations. The difference between PAI estimations with and without a slope correction can be neglected. These results demonstrate that SS TLS data can serve as a means for PAI estimations of both OV and UV, which should help facilitate large-scale estimation in the subtropical forests of China.
引用
收藏
页数:19
相关论文
共 62 条
[1]   Detecting successional changes in tropical forest structure using GatorEye drone-borne lidar [J].
Alves de Almeida, Danilo Roberti ;
Almeyda Zambrano, Angelica Maria ;
Broadbent, Eben North ;
Wendt, Amanda L. ;
Foster, Paul ;
Wilkinson, Benjamin E. ;
Salk, Carl ;
Papa, Daniel de Almeida ;
Stark, Scott Christopher ;
Valbuena, Ruben ;
Gorgens, Eric Bastos ;
Silva, Carlos Alberto ;
Santin Brancalion, Pedro Henrique ;
Fagan, Matthew ;
Meli, Paula ;
Chazdon, Robin .
BIOTROPICA, 2020, 52 (06) :1155-1167
[2]   Terrestrial laser scanning in forest ecology: Expanding the horizon [J].
Calders, Kim ;
Adams, Jennifer ;
Armston, John ;
Bartholomeus, Harm ;
Bauwens, Sebastien ;
Bentley, Lisa Patrick ;
Chave, Jerome ;
Danson, F. Mark ;
Demol, Miro ;
Disney, Mathias ;
Gaulton, Rachel ;
Moorthy, Sruthi M. Krishna ;
Levick, Shaun R. ;
Saarinen, Ninni ;
Schaaf, Crystal ;
Stovall, Atticus ;
Terryn, Louise ;
Wilkes, Phil ;
Verbeeck, Hans .
REMOTE SENSING OF ENVIRONMENT, 2020, 251
[3]   Implications of sensor configuration and topography on vertical plant profiles derived from terrestrial LiDAR [J].
Calders, Kim ;
Armston, John ;
Newnham, Glenn ;
Herold, Martin ;
Goodwin, Nicholas .
AGRICULTURAL AND FOREST METEOROLOGY, 2014, 194 :104-117
[4]   Quantifying understory vegetation density using small-footprint airborne lidar [J].
Campbell, Michael J. ;
Dennison, Philip E. ;
Hudak, Andrew T. ;
Parham, Lucy M. ;
Butler, Bret W. .
REMOTE SENSING OF ENVIRONMENT, 2018, 215 :330-342
[5]   Comparison of Five Slope Correction Methods for Leaf Area Index Estimation From Hemispherical Photography [J].
Cao, Biao ;
Du, Yongming ;
Li, Jing ;
Li, Hua ;
Li, Li ;
Zhang, Yang ;
Zou, Jie ;
Liu, Qinhuo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (09) :1958-1962
[6]   Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China [J].
Chen, Hao ;
Zhang, Xiaoping ;
Abla, Muratjan ;
Lu, Du ;
Yan, Rui ;
Ren, Qingfu ;
Ren, Zhiyong ;
Yang, Yahui ;
Zhao, Wenhui ;
Lin, Pengfei ;
Liu, Baoyuan ;
Yang, Xihua .
CATENA, 2018, 170 :141-149
[7]   DEFINING LEAF-AREA INDEX FOR NON-FLAT LEAVES [J].
CHEN, JM ;
BLACK, TA .
PLANT CELL AND ENVIRONMENT, 1992, 15 (04) :421-429
[8]   QUANTIFYING THE EFFECT OF CANOPY ARCHITECTURE ON OPTICAL MEASUREMENTS OF LEAF-AREA INDEX USING 2 GAP SIZE ANALYSIS-METHODS [J].
CHEN, JM ;
CIHLAR, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1995, 33 (03) :777-787
[9]   Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands [J].
Chen, JM .
AGRICULTURAL AND FOREST METEOROLOGY, 1996, 80 (2-4) :135-163
[10]   Effects of voxel size and sampling setup on the estimation of forest canopy gap fraction from terrestrial laser scanning data [J].
Cifuentes, Renato ;
Van der Zande, Dimitry ;
Farifteh, Jamshid ;
Salas, Christian ;
Coppin, Pol .
AGRICULTURAL AND FOREST METEOROLOGY, 2014, 194 :230-240