Complex dislocation loop networks as natural extensions of the sink efficiency of saturated grain boundaries in irradiated metals

被引:3
作者
He, Sicong [1 ]
Mang, Emily H. [2 ]
Leff, Asher C. [3 ,4 ]
Zhou, Xinran [1 ]
Taheri, Mitra L. [2 ]
Marian, Jaime [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[3] Army Res Lab, Adelphi, MD 20783 USA
[4] TauMat LLC, 10010 Portland Pl, Silver Spring, MD 20901 USA
关键词
NANOCRYSTALLINE; BEHAVIOR; DENSITY; ORIENTATION; DEPENDENCE; RESISTANCE; TOLERANCE; CHARACTER; DYNAMICS; SEARCH;
D O I
10.1126/sciadv.adj8395
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of radiation-tolerant structural materials is an essential element for the success of advanced nuclear energy concepts. A proven strategy to increase radiation resistance is to create microstructures with a high density of internal defect sinks, such as grain boundaries (GBs). However, as GBs absorb defects, they undergo internal transformations that limit their ability to capture defects indefinitely. Here, we show that, as the sink efficiency of GBs becomes exhausted with increasing irradiation dose, networks of irradiation loops form in the vicinity of saturated or near-saturated GB, maintaining and even increasing their capacity to continue absorbing defects. The formation of these networks fundamentally changes the driving force for defect absorption at GB, from "chemical" to "elastic." Using thermally-activated dislocation dynamics simulations, we show that these networks are consistent with experimental measurements of defect densities near GB. Our results point to these networks as a natural continuation of the GB once they exhaust their internal defect absorption capacity.
引用
收藏
页数:9
相关论文
共 62 条
[1]  
Andreoni W., 2020, HDB MAT MODELING APP
[2]   Changes in the burgers vector of perfect dislocation loops without contact with the external dislocations [J].
Arakawa, K ;
Hatanaka, M ;
Kuramoto, E ;
Ono, K ;
Mori, H .
PHYSICAL REVIEW LETTERS, 2006, 96 (12) :1-4
[3]   Observation of the one-dimensional diffusion of nanometer-sized dislocation loops [J].
Arakawa, K. ;
Ono, K. ;
Isshiki, M. ;
Mimura, K. ;
Uchikoshi, M. ;
Mori, H. .
SCIENCE, 2007, 318 (5852) :956-959
[4]   Theoretical investigation of microstructure evolution and deformation of zirconium under neutron irradiation [J].
Barashev, A. V. ;
Golubov, S. I. ;
Stoller, R. E. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 461 :85-94
[5]   Irradiation-induced grain boundary facet motion: In situ observations and atomic-scale mechanisms [J].
Barr, Christopher M. ;
Chen, Elton Y. ;
Nathaniel, James E., II ;
Lu, Ping ;
Adams, David P. ;
Dingreville, Remi ;
Boyce, Brad L. ;
Hattar, Khalid ;
Medlin, Douglas L. .
SCIENCE ADVANCES, 2022, 8 (23)
[6]   Examining the influence of grain size on radiation tolerance in the nanocrystalline regime [J].
Barr, Christopher M. ;
Li, Nan ;
Boyce, Brad L. ;
Hattar, Khalid .
APPLIED PHYSICS LETTERS, 2018, 112 (18)
[7]   Grain boundary character dependence of radiation-induced segregation in a model Ni-Cr alloy [J].
Barr, Christopher M. ;
Barnard, Leland ;
Nathaniel, James E. ;
Hattar, Khalid ;
Unocic, Kinga A. ;
Szlufarska, Izabela ;
Morgan, Dane ;
Taheri, Mitra L. .
JOURNAL OF MATERIALS RESEARCH, 2015, 30 (09) :1290-1299
[8]   A novel approach to study dislocation density tensors and lattice rotation patterns in atomistic simulations [J].
Begau, C. ;
Hua, J. ;
Hartmaier, A. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2012, 60 (04) :711-722
[9]   Defect-interface interactions [J].
Beyerlein, I. J. ;
Demkowicz, M. J. ;
Misra, A. ;
Uberuaga, B. P. .
PROGRESS IN MATERIALS SCIENCE, 2015, 74 :125-210
[10]   Radiation damage tolerant nanomaterials [J].
Beyerlein, I. J. ;
Caro, A. ;
Demkowicz, M. J. ;
Mara, N. A. ;
Misra, A. ;
Uberuaga, B. P. .
MATERIALS TODAY, 2013, 16 (11) :443-449