Machine learning techniques for prediction in pregnancy complicated by autoimmune rheumatic diseases: Applications and challenges

被引:1
|
作者
Zhou, Xiaoshi [1 ]
Cai, Feifei [1 ]
Li, Shiran [1 ]
Li, Guolin [1 ,2 ]
Zhang, Changji [1 ,2 ]
Xie, Jingxian [1 ,3 ]
Yang, Yong [1 ]
机构
[1] Univ Elect Sci & Technol China, Sichuan Acad Med Sci & Sichuan Prov Peoples Hosp, Sch Med, Dept Pharm, Chengdu, Peoples R China
[2] China Pharmaceut Univ, Sch Basic Med & Clin Pharm, Nanjing, Peoples R China
[3] Southwest Med Univ, Coll Pharm, Luzhou, Peoples R China
关键词
Autoimmune rheumatic diseases; Pregnancy complications; Machine learning; Prediction; Artificial intelligence; SYSTEMIC-LUPUS-ERYTHEMATOSUS; ANTIPHOSPHOLIPID SYNDROME; ARTIFICIAL-INTELLIGENCE; HEALTH; MANAGEMENT; DIAGNOSIS; OUTCOMES; WOMENS; RISK; REPRODUCTION;
D O I
10.1016/j.intimp.2024.112238
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Autoimmune rheumatic diseases are chronic conditions affecting multiple systems and often occurring in young women of childbearing age. The diseases and the physiological characteristics of pregnancy significantly impact maternal-fetal health and pregnancy outcomes. Currently, the integration of big data with healthcare has led to the increasing popularity of using machine learning (ML) to mine clinical data for studying pregnancy complications. In this review, we introduce the basics of ML and the recent advances and trends of ML in different prediction applications for common pregnancy complications by autoimmune rheumatic diseases. Finally, the challenges and future for enhancing the accuracy, reliability, and clinical applicability of ML in prediction have been discussed. This review will provide insights into the utilization of ML in identifying and assisting clinical decision-making for pregnancy complications, while also establishing a foundation for exploring comprehensive management strategies for pregnancy and enhancing maternal and child health.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Pregnancy in autoimmune rheumatic diseases: The importance of counselling for old and new challenges
    Andreoli, Laura
    Bazzani, Chiara
    Taraborelli, Mara
    Reggia, Rossella
    Lojacono, Andrea
    Brucato, Antonio
    Meroni, Pier Luigi
    Tincani, Angela
    AUTOIMMUNITY REVIEWS, 2010, 10 (01) : 51 - 54
  • [2] Epigenetics, pregnancy and autoimmune rheumatic diseases
    Pacini, Greta
    Paolino, Sabrina
    Andreoli, Laura
    Tincani, Angela
    Gerosa, Maria
    Caporali, Roberto
    Iagnocco, Annamaria
    Ospelt, Caroline
    Smith, Vanessa
    Cutolo, Maurizio
    AUTOIMMUNITY REVIEWS, 2020, 19 (12)
  • [3] Pregnancy and reproduction in autoimmune rheumatic diseases
    Ostensen, Monika
    Brucato, Antonio
    Carp, Howard
    Chambers, Christina
    Dolhain, Radboud J. E. M.
    Doria, Andrea
    Foerger, Frauke
    Gordon, Caroline
    Hahn, Sinuhe
    Khamashta, Munther
    Lockshin, Michael D.
    Matucci-Cerinic, Marco
    Meroni, Pierluigi
    Nelson, J. Lee
    Parke, Ann
    Petri, Michelle
    Raio, Luigi
    Ruiz-Irastorza, Guillermo
    Silva, Clovis A.
    Tincani, Angela
    Villiger, Peter M.
    Wunder, Dorothea
    Cutolo, Maurizio
    RHEUMATOLOGY, 2011, 50 (04) : 657 - 664
  • [4] Machine learning and artificial intelligence within pediatric autoimmune diseases: applications, challenges, future perspective
    Sadeghi, Parniyan
    Karimi, Hanie
    Lavafian, Atiye
    Rashedi, Ronak
    Samieefar, Noosha
    Shafiekhani, Sajad
    Rezaei, Nima
    EXPERT REVIEW OF CLINICAL IMMUNOLOGY, 2024, 20 (10) : 1219 - 1236
  • [5] Is pregnancy a risk factor for rheumatic autoimmune diseases?
    Marder, Wendy
    Somers, Emily C.
    CURRENT OPINION IN RHEUMATOLOGY, 2014, 26 (03) : 321 - 328
  • [6] Impact of infections in autoimmune rheumatic diseases and pregnancy
    Jara, Luis J.
    del Pilar Cruz-Dominguez, Maria
    Saavedra, Miguel A.
    CURRENT OPINION IN RHEUMATOLOGY, 2019, 31 (05) : 546 - 552
  • [7] Machine Learning in Rheumatic Diseases
    Mengdi Jiang
    Yueting Li
    Chendan Jiang
    Lidan Zhao
    Xuan Zhang
    Peter E Lipsky
    Clinical Reviews in Allergy & Immunology, 2021, 60 : 96 - 110
  • [8] Machine Learning in Rheumatic Diseases
    Jiang, Mengdi
    Li, Yueting
    Jiang, Chendan
    Zhao, Lidan
    Zhang, Xuan
    Lipsky, Peter E.
    CLINICAL REVIEWS IN ALLERGY & IMMUNOLOGY, 2021, 60 (01) : 96 - 110
  • [9] Autoimmune Rheumatic Diseases 2 Systemic lupus erythematosus and other autoimmune rheumatic diseases: challenges to treatment
    Murphy, Grainne
    Lisnevskaia, Larissa
    Isenberg, David
    LANCET, 2013, 382 (9894): : 809 - 818
  • [10] Machine Learning Techniques for Hypoglycemia Prediction: Trends and Challenges
    Mujahid, Omer
    Contreras, Ivan
    Vehi, Josep
    SENSORS, 2021, 21 (02) : 1 - 21