GLOBAL SOLVABILITY OF AN INVERSE PROBLEM FOR A MOORE-GIBSON-THOMPSON EQUATION WITH PERIODIC BOUNDARY AND INTEGRAL OVERDETERMINATION CONDITIONS

被引:1
作者
Durdiev, D. K. [1 ,2 ]
Boltaev, A. A. [1 ,3 ]
机构
[1] Acad Sci Uzbek, Romanovskii Inst Math, Bukhara Branch, 11 M Ikbal St, Bukhara 200117, Uzbekistan
[2] Bukhara State Univ, 11 Muhammad Ikbal St, Bukhara 200117, Uzbekistan
[3] North Caucasus Ctr Math Res VSC RAS, 1 Williams St, Mikhailovskoye 363110, Russia
来源
EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS | 2024年 / 12卷 / 02期
关键词
Moore-Gibson-Thompson equation; initial-boundary problem; periodic boundary conditions; inverse problem; Fourier spectral method; Banach principle; ONE-DIMENSIONAL KERNEL; MEMORY; IDENTIFICATION;
D O I
10.32523/2306-6172-2024-12-2-35-49
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article studies the inverse problem of determining the pressure and convolution kernel in an integro-differential Moore-Gibson-Thompson equation with initial, periodic boundary and integral overdetermination conditions on the rectangular domain. By Fourier method this problem is reduced to an equivalent integral equation and on based of Banach's fixed point argument in a suitably chosen function space, the local solvability of the problem is proven. Then, the found solutions are continued throughout the entire domain of definition of the unknowns.
引用
收藏
页码:35 / 49
页数:15
相关论文
共 28 条
[1]   An inverse boundary value problem for a second-order hyperbolic equation with nonclassical boundary conditions [J].
Aliev, Z. S. ;
Mehraliev, Ya. T. .
DOKLADY MATHEMATICS, 2014, 90 (01) :513-517
[2]   An inverse problem for Moore-Gibson-Thompson equation arising in high intensity ultrasound [J].
Arancibia, Rogelio ;
Lecaros, Rodrigo ;
Mercado, Alberto ;
Zamorano, Sebastian .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2022, 30 (05) :659-675
[3]   Determination of a coefficient in a quasilinear parabolic equation with periodic boundary condition [J].
Baglan, Irem .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2015, 23 (05) :884-900
[4]   NUMERICAL DETERMINING A MEMORY FUNCTION OF A HORIZONTALLY-STRATIFIED ELASTIC MEDIUM WITH AFTEREFFECT [J].
Bozorov, Z. R. .
EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2020, 8 (02) :28-40
[5]  
Budak B. M., 1979, Collection of Problems on Mathematical Physics
[6]   Problem of Determining the Thermal Memory of a Conducting Medium [J].
Durdiev, D. K. ;
Zhumaev, Zh Zh .
DIFFERENTIAL EQUATIONS, 2020, 56 (06) :785-796
[7]   The problem of determining the one-dimensional kernel of the electroviscoelasticity equation [J].
Durdiev, D. K. ;
Totieva, Zh. D. .
SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (03) :427-444
[8]  
Durdiev D. K., 2023, Kernel determination problems in hyperbolic integro-differential equations
[9]   The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equations [J].
Durdiev, Durdimurod Kalandarovich ;
Totieva, Zhanna Dmitrievna .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) :8019-8032
[10]   NUMERICAL METHOD FOR DETERMINING THE DEPENDENCE OF THE DIELECTRIC PERMITTIVITY ON THE FREQUENCY IN THE EQUATION OF ELECTRODYNAMICS WITH MEMORY [J].
Durdiev, U. D. .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 :179-189