AMFNet: Attention-Guided Multi-Scale Fusion Network for Bi-Temporal Change Detection in Remote Sensing Images

被引:8
|
作者
Zhan, Zisen [1 ]
Ren, Hongjin [1 ]
Xia, Min [1 ]
Lin, Haifeng [2 ]
Wang, Xiaoya [1 ,3 ]
Li, Xin [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equipm, Nanjing 210044, Peoples R China
[2] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210000, Peoples R China
[3] Univ Reading, Dept Comp Sci, Reading RG6 6DH, England
关键词
change detection; remote sensing image; deep learning; multi-scale supervised; USE/LAND-COVER CHANGE; URBAN EXPANSION; OPTICAL-IMAGES; SAR;
D O I
10.3390/rs16101765
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Change detection is crucial for evaluating land use, land cover changes, and sustainable development, constituting a significant component of Earth observation tasks. The difficulty in extracting features from high-resolution images, coupled with the complexity of image content, poses challenges for traditional change detection algorithms in terms of accuracy and applicability. The recent emergence of deep learning methods has led to substantial progress in the field of change detection. However, existing frameworks often involve the simplistic integration of bi-temporal features in specific areas, lacking the fusion of temporal information and semantic details in the images. In this paper, we propose an attention-guided multi-scale fusion network (AMFNet), which effectively integrates bi-temporal image features and diverse semantics at both the encoding and decoding stages. AMFNet utilizes a unique attention-guided mechanism to dynamically adjust feature fusion, enhancing adaptability and accuracy in change detection tasks. Our method intelligently incorporates temporal information into the deep learning model, considering the temporal dependency inherent in these tasks. We decode based on an interactive feature map, which improves the model's understanding of evolving patterns over time. Additionally, we introduce multi-level supervised training to facilitate the learning of fused features across multiple scales. In comparison with different algorithms, our proposed method achieves F1 values of 0.9079, 0.8225, and 0.8809 in the LEVIR-CD, GZ-CD, and SYSU-CD datasets, respectively. Our model outperforms the SOTA model, SAGNet, by 0.69% in terms of F1 and 1.15% in terms of IoU on the LEVIR-CD dataset, by 2.8% in terms of F1 and 1.79% in terms of IoU on the GZ-CD dataset, and by 0.54% in terms of F1 and 0.38% in terms of IoU on the SYSU-CD dataset. The method proposed in this study can be applied to various complex scenarios, establishing a change detection method with strong model generalization capabilities.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] MAFF-Net: Multi-Attention Guided Feature Fusion Network for Change Detection in Remote Sensing Images
    Ma, Jinming
    Shi, Gang
    Li, Yanxiang
    Zhao, Ziyu
    SENSORS, 2022, 22 (03)
  • [32] MIFNet: Multi-Scale Interaction Fusion Network for Remote Sensing Image Change Detection
    Xie, Weiying
    Shao, Wenjie
    Li, Daixun
    Li, Yunsong
    Fang, Leyuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) : 2725 - 2739
  • [33] MSGFNet: Multi-Scale Gated Fusion Network for Remote Sensing Image Change Detection
    Wang, Yukun
    Wang, Mengmeng
    Hao, Zhonghu
    Wang, Qiang
    Wang, Qianwen
    Ye, Yuanxin
    REMOTE SENSING, 2024, 16 (03)
  • [34] Multi-scale feature progressive fusion network for remote sensing image change detection
    Lu, Di
    Cheng, Shuli
    Wang, Liejun
    Song, Shiji
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [35] Multi-scale feature progressive fusion network for remote sensing image change detection
    Di Lu
    Shuli Cheng
    Liejun Wang
    Shiji Song
    Scientific Reports, 12
  • [36] CDasXORNet: Change detection of buildings from bi-temporal remote sensing images as an XOR problem
    Chen, Shanxiong
    Shi, Wenzhong
    Zhou, Mingting
    Zhang, Min
    Yu, Yue
    Sun, Yangjie
    Guan, Linjie
    Li, Shuangping
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 130
  • [37] AMFFNet: attention-guided multi-level feature fusion network for land cover classification of remote sensing images
    Tang, Bochuan
    Tuerxun, Palidan
    Qi, Ranran
    Yang, Guangqi
    Qian, Yurong
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (02)
  • [38] OBJECT-ORIENTED CHANGE DETECTION FOR REMOTE SENSING IMAGES BASED ON MULTI-SCALE FUSION
    Feng, Wenqing
    Sui, Haigang
    Tu, Jihui
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 483 - 491
  • [39] MSGATN: A Superpixel-Based Multi-Scale Siamese Graph Attention Network for Change Detection in Remote Sensing Images
    Shuai, Wenjing
    Jiang, Fenlong
    Zheng, Hanhong
    Li, Jianzhao
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [40] FFPNet: Fine-Grained Feature Perception Network for Semantic Change Detection on Bi-Temporal Remote Sensing Images
    Zhang, Fengwei
    Xia, Kai
    Yin, Jianxin
    Deng, Susu
    Feng, Hailin
    REMOTE SENSING, 2024, 16 (21)