Electron transfer from yttrium hydride to Mo-carbonitride boosts low-temperature ammonia synthesis

被引:0
|
作者
Roy, Pintu Kumar [1 ]
Kumar, Sushant [1 ]
机构
[1] Indian Inst Technol Patna, Dept Chem & Biochem Engn, Gas Solid Interact Lab, Patna 801106, Bihar, India
关键词
Haber; -Bosch; Ammonia; Hydride; Carbonitride; Dissociation; Active sites; HYDROGEN; STABILITY; CATALYSTS; NITRIDE; REDUCTION; CARBIDE; STORAGE; WATER;
D O I
10.1016/j.ijhydene.2024.03.256
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ammonia is pivotal to various chemical industries, which is produced using the Haber-Bosch process. This process requires harsh conditions (e.g., 20.0 MPa and (500-600)degrees C) to generate ammonia and thus, is an energy intensive process. The growing consensus is to mild the conditions for ammonia generation. Herein, we demonstrate the use of hydride to increase the activity of molybdenum carbonitride (MCN). YH@MCN (95:5, w/ w) generates ammonia at a rate of 448 mu molg- 1h- 1 at 255 degrees C and 0.1 MPa. To address the stability issue of hydride, we incorporate iron. The experiment demonstrates two-fold rates for such catalyst, comparing MCN alone. The activation energy (19.73kJmol-1) for YFeH@MCN is considerably low, owing to the electron transfer from YH to MCN that facilitates nitrogen dissociation. Hence, the use of distinct sites for easy dissociation of nitrogen molecules, and the synergy between them, results in an activity that exceeds of conventional molybdenum and iron-based catalysts, and is comparable to ruthenium-based catalysts. Our results illustrate the potential of using synergistic multiple active sites in catalysts, and introduce a design concept for ammonia synthesis catalysts, using readily available elements.
引用
收藏
页码:497 / 506
页数:10
相关论文
共 50 条
  • [21] SYNTHESIS OF A LOW-TEMPERATURE CONVERSION CATALYST OF CARBON MONOXIDE IN AMMONIA PRODUCTION
    Il'in, A. A.
    Veres, K. A.
    Ivanova, T., V
    Seioum, M. B.
    Il'in, A. P.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2021, 64 (10): : 91 - 97
  • [22] Hydrothermal chemistry of silicates:: Low-temperature synthesis of y-yttrium disilicate
    Becerro, AI
    Naranjo, M
    Perdigón, AC
    Trillo, JM
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2003, 86 (09) : 1592 - 1594
  • [23] Synthesis of nanocrystalline zirconium dioxide stabilized with yttrium oxide for low-temperature sintering
    V. B. Kul’met’eva
    S. E. Porozova
    E. S. Gnedina
    Russian Journal of Non-Ferrous Metals, 2013, 54 : 239 - 245
  • [24] Low-temperature synthesis of nanocrystalline yttrium aluminum garnet powder using triethanolamine
    Liu, YQ
    Gao, L
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2003, 86 (10) : 1651 - 1653
  • [25] Synthesis of nanocrystalline zirconium dioxide stabilized with yttrium oxide for low-temperature sintering
    Kul'met'eva, V. B.
    Porozova, S. E.
    Gnedina, E. S.
    RUSSIAN JOURNAL OF NON-FERROUS METALS, 2013, 54 (03) : 239 - 245
  • [26] LOW-TEMPERATURE SYNTHESIS OF DOLOMITE FROM ARAGONITE
    CHAZEN, PO
    EHRLICH, R
    GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 1973, 84 (11) : 3627 - 3634
  • [27] Low-temperature electron-phonon heat transfer in metal films
    Cojocaru, S.
    Anghel, D. V.
    PHYSICAL REVIEW B, 2016, 93 (11)
  • [28] Low-temperature methods for synthesis of aluminomagnesium spinel and effect of yttrium oxide on its sintering
    Morozova, LV
    Panova, TI
    Lapshin, AE
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 1999, 72 (04) : 567 - 571
  • [29] Low-temperature synthesis and particle-size control in yttrium-based phosphors
    Pennsylvania State Univ, University Park, United States
    J Soc Inf Disp, 2 (107-110):
  • [30] A LOW-TEMPERATURE SYNTHESIS OF BARIUM ORGANOMETALLICS VIA MIXED AMMONIA ETHEREAL SOLVENTS
    DRAKE, SR
    OTWAY, DJ
    POLYHEDRON, 1992, 11 (07) : 745 - 758