A frequency-Hankel transform method to extract multimodal Rayleigh wave dispersion spectra from active and passive source surface wave data

被引:0
作者
Yang, Zhentao [1 ]
Sun, Yao-Chong [2 ]
Zhang, Dazhou [3 ]
Han, Pen [1 ]
Chen, Xiaofei [1 ]
机构
[1] Southern Univ Sci & Technol, Guangdong Prov Key Lab Geophys High resolut Imagin, Shenzhen, Peoples R China
[2] Tongji Univ, State Key Lab Marine Geol, Shanghai, Peoples R China
[3] Cent Southern Univ, Sch Geosci & Info Phys, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
AMBIENT SEISMIC NOISE; 2-STATION ANALYSIS; ARRAY TOMOGRAPHY; EFFICIENT METHOD; GREENS-FUNCTION; SE TIBET; INVERSION; VELOCITY; CRUSTAL; CURVES;
D O I
10.1190/GEO2023-0189.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Rayleigh wave dispersion energy spectra have been widely used to extract dispersion curves and invert underground S -wave velocity structures for engineering geophysics and seismology. We develop a frequency-Hankel (F -H) transform method to extract high -quality multimodal Rayleigh wave dispersion energy spectra from active and passive source Rayleigh wave data. The F -H transform method is inspired by the frequency-Bessel (F -J) transform method and considers the physical meaning of Green ' s functions for Rayleigh wave dispersion analysis. The F -H transform method can naturally avoid crossed artifacts caused by converging waves on F -J spectrograms and obtain more multimodal dispersion spectra of the same quality with fewer Rayleigh wave data than the F -J transform method. Synthetic and field Rayleigh wave data from active and passive sources for near -surface exploration and ambient noise tomography are used to demonstrate the validity, accuracy, and applicability of the F -H transform method. The F -H transform method unifies the formulas of the F -J transform method and its modifications for active and passive sources of Rayleigh wave data. The F -H transform method is a robust and efficient multimodal Rayleigh wave dispersion analysis method for active and passive source Rayleigh wave data.
引用
收藏
页码:KS69 / KS81
页数:13
相关论文
共 37 条
  • [1] Aki K., 1957, Bulletin of the Earthquake Research Institute, University of Tokyo, V35, P415
  • [2] Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements
    Bensen, G. D.
    Ritzwoller, M. H.
    Barmin, M. P.
    Levshin, A. L.
    Lin, F.
    Moschetti, M. P.
    Shapiro, N. M.
    Yang, Y.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 169 (03) : 1239 - 1260
  • [3] A SYSTEMATIC AND EFFICIENT METHOD OF COMPUTING NORMAL-MODES FOR MULTILAYERED HALF-SPACE
    CHEN, XF
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 1993, 115 (02) : 391 - 409
  • [4] de Ridder Sjoerd, 2011, Leading Edge, V30, P506, DOI 10.1190/1.3589108
  • [6] Extension of the spatial autocorrelation (SPAC) method to mixed-component correlations of surface waves
    Haney, Matthew M.
    Mikesell, T. Dylan
    van Wijk, Kasper
    Nakahara, Hisashi
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 191 (01) : 189 - 206
  • [7] HISADA Y, 1995, B SEISMOL SOC AM, V85, P1080
  • [8] KRAMERS-KRONIG IN 2 LINES
    HU, BYK
    [J]. AMERICAN JOURNAL OF PHYSICS, 1989, 57 (09) : 821 - 821
  • [9] The Frequency-Bessel Spectrograms of Multicomponent Cross-Correlation Functions From Seismic Ambient Noise
    Hu, Shaoqian
    Luo, Song
    Yao, Huajian
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (08)
  • [10] Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps
    Lin, Fan-Chi
    Moschetti, Morgan P.
    Ritzwoller, Michael H.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2008, 173 (01) : 281 - 298