Global Solutions for a Nonlocal Problem with Logarithmic Source Term

被引:0
作者
Lapa, Eugenio Cabanillas [1 ]
机构
[1] FCM UNMSM, Inst Invest, Av Venezuela S-N, Lima, Peru
关键词
Global solutions; Degenerate nonlocal problem; Asymptotic behavior; EXISTENCE; EQUATION; DECAY;
D O I
10.22130/scma.2023.2001016.1307
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The current paper discusses the global existence and asymptotic behavior of solutions of the following new nonlocal problem utt - M (. O |.u|2 dx). u + dut = |u|.- 2 u log |u|, in Ox]0,8[, where M(s) = {a - bs, for s. [0, a b [, 0, for s. [ a b,+8[. If the initial data are appropriately small, we derive existence of global strong solutions and the exponential decay of the energy.
引用
收藏
页码:371 / 385
页数:16
相关论文
共 28 条
[1]  
Aassila M., 2001, Funkcial. Ekvac, V44, P309
[2]  
Araruna F.D., 2018, Recent Advances in PDEs:Analysis, Numerics and Control, V17, P17
[3]   INFLATIONARY MODELS WITH LOGARITHMIC POTENTIALS [J].
BARROW, JD ;
PARSONS, P .
PHYSICAL REVIEW D, 1995, 52 (10) :5576-5587
[4]   One-dimensional Klein-Gordon equation with logarithmic nonlinearities [J].
Bartkowski, Konrad ;
Gorka, Przemyslaw .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (35)
[5]   Global existence and energy decay of solutions for Kirchhoff-Carrier equations with weakly nonlinear dissipation [J].
Benaissa, A ;
Rahmani, L .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2004, 11 (04) :547-574
[6]   Note on Some Nonlinear Integral Inequalities and Applications to Differential Equations [J].
Boukerrioua, Khaled .
INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 2011
[7]   Polynomial Decay Rate for Kirchhoff Type in Viscoelasticity with Logarithmic Nonlinearity and Not Necessarily Decreasing Kernel [J].
Boulaaras, Salah ;
Draifia, Alaeddin ;
Alnegga, Mohammad .
SYMMETRY-BASEL, 2019, 11 (02)
[8]  
Cordeiro S.M.S., 2021, Partial Differ. Equations Appl. Math., V3, DOI DOI 10.1016/J.PADIFF.2020.100018
[9]   Q-balls and baryogenesis in the MSSM [J].
Enqvist, K ;
McDonald, J .
PHYSICS LETTERS B, 1998, 425 (3-4) :309-321
[10]  
Ghisi M, 2004, ASYMPTOTIC ANAL, V40, P25