Disaster victim identification: Stable isotope analysis and the identification of unknown decedents

被引:5
作者
Chesson, Lesley A. [1 ]
Berg, Gregory E. [1 ,2 ]
Megyesi, Mary [1 ]
机构
[1] Joint Base Pearl Harbor Hickam, Def POW MIA Accounting Agcy Lab, Honolulu, HI USA
[2] Joint Base Pearl Harbor Hickam, Def POW MIA Accounting Agcy Lab, Honolulu, HI 96853 USA
关键词
disaster victim identification; forensic anthropology; forensic chemistry; forensic science; isotope delta values; stable isotope analysis; HUMAN HAIR; CARBON; NITROGEN; RATIOS; DIET; PHOSPHATE; STRONTIUM; HYDROGEN; ORIGIN; REGION;
D O I
10.1111/1556-4029.15554
中图分类号
DF [法律]; D9 [法律]; R [医药、卫生];
学科分类号
0301 ; 10 ;
摘要
Within the complex world of disaster victim identification, or DVI, forensic science practitioners use a variety of investigative techniques to work toward a common goal: identification of the decedents, bringing closure to the affected communities. Identification is a complex undertaking; the event (disaster) also can be extraordinarily complex, as it may be an acute event, or one that spans months or years. Compounding this time issue, remains may be heavily fragmented, dispersed, commingled, or otherwise disrupted by either the perpetrators or the disaster itself. To help solve these complexities, we explore the use of stable isotope analysis (SIA) in DVI events. SIA can be used with a variety of body tissues (hair, nail, bone, and teeth), and each represents different time depths in a decedent's life. Bone collagen and tooth enamel carbonate are useful to reconstruct an individual's diet and source water intakes, respectively, leading to likely population or geographic origin determinations. Additionally, the carbon and nitrogen isotopic signatures of bone collagen have calculated intraperson ranges. These facts allow investigators to determine likely origin of remains using isotopic data and can be used to link skeletal elements (to an individual), or perhaps more importantly, show that remains are not linked. Application of SIA can thus speed remains identification by eliminating individuals from short lists for identification, linking or decoupling remains, and reducing the need for some DNA testing. These strategies and hypothesis tests should commence early in the DVI process to achieve maximum effectiveness.
引用
收藏
页码:1658 / 1670
页数:13
相关论文
共 84 条
  • [1] 9/11 Memorial & Museum, US
  • [2] AAFS Standard Board, 2018, Forensic anthropology in disaster victim identification: best practice recommendations for the medicolegal authority
  • [3] AlQahtani SJ., 2009, Atlas of Tooth Development and Eruption
  • [4] Ammer S., 2024, METHODOLOGICAL TECHN, P259
  • [5] [Anonymous], INT CRIMINAL TRIBUNA
  • [6] Bartelink EJ., 2020, FORENSIC SCI HUMANIT, P369, DOI [10.1002/9781119482062.ch24, DOI 10.1002/9781119482062.CH24]
  • [7] Bartelink E, 2014, ADVANCES IN FORENSIC HUMAN IDENTIFICATION, P165
  • [8] Recent applications of isotope analysis to forensic anthropology
    Bartelink, Eric J.
    Chesson, Lesley A.
    [J]. FORENSIC SCIENCES RESEARCH, 2019, 4 (01) : 29 - 44
  • [9] Bartelink EJ, 2018, NEW PERSPECTIVES IN FORENSIC HUMAN SKELETAL IDENTIFICATION, P175, DOI 10.1016/B978-0-12-805429-1.00015-6
  • [10] APPLICATION OF STABLE ISOTOPE FORENSICS FOR PREDICTING REGION OF ORIGIN OF HUMAN REMAINS FROM PAST WARS AND CONFLICTS
    Bartelink, Eric J.
    Berg, Gregory E.
    Beasley, Melanie M.
    Chesson, Lesley A.
    [J]. ANNALS OF ANTHROPOLOGICAL PRACTICE, 2014, 38 (01) : 124 - 136